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Abstract

Previous approaches to discovering design patterns in
source code have suffered from a need to enumerate static
descriptions of structural and behavioural relationships, re-
sulting in a finite library of variations on pattern implemen-
tation. Our approach differs in that we do not seek to stat-
ically encode each pattern, and each variant, that we wish
to find. Rather, we encode in a formal denotational seman-
tics a small number of fundamental OO concepts (elemental
design patterns), encode the rules by which these concepts
are combined to form patterns(reliance operators), and en-
code the structural/behavioral relationships among compo-
nents of objects and classes (rho-calculus). A logical infer-
ence system then is used to reveal large numbers of patterns
and their variations from this small number of definitions.
Our system finds patterns that were notexplicitly defined,
but instead are inferred dynamically during code analysis
by a theorem prover, providing practical tool support for
software construction, comprehension, maintenance, and
refactoring.

1. Introduction

Practical tool support has always lagged behind the de-
velopment of important abstractions and theoretical con-
cepts in programming languages. One current successful
abstraction in widespread use is the design pattern, an ap-
proach describing portions of systems that designers can
learn from, modify, apply, and understand as a single con-
ceptual item [11]. Design patterns are generally, if infor-
mally, defined as common solutions to common problems
which are of significant complexity to require an explicit
discussion of the scope of the problem and the proposed so-
lution. Much of the popular literature on design patterns
is dedicated to these larger, more complex patterns, provid-

ing practitioners with increasingly powerful constructs with
which to work.

Design patterns, however, are at such a level of abstrac-
tion that they have so far proven resistant to tool support.
The myriad variations with which any one design pattern
may be implemented makes them difficult to describe suc-
cinctly or find in source code. We have discovered a class
of patterns that are small enough to find easily but compos-
able in ways that can be expressed in the rules of a logical
inference system. We term themElemental Design Patterns
(EDPs), and they are the base concepts on which the more
complex design patterns are built. Because they comprise
the constructs which are used repeatedly within more com-
mon patterns to solve the same problems, such as abstrac-
tion of interface and delegation of implementation, they ex-
hibit interesting properties for partially bridging the gap be-
tween source code in everyday use and the higher-level ab-
stractions of the larger patterns. The higher-level patterns
are thus described in the language of elemental patterns,
which fills an apparent missing link in the abstraction chain.

The formally expressible and informally amorphous
halves of design patterns also present an interesting set of
problems for the theorist due to their dual nature [2]. The
concepts contained in patterns are those that the profes-
sional community has deemed important and noteworthy,
and they are ultimately expressed as source code that is re-
ducible to a mathematically formal notation. The core con-
cepts themselves have to date evaded such formalization.
We show here that such a formalization is possible, and in
addition that it can meet certain essential critieria. We also
show how the formalization leads to useful and direct tool
support for the developer with a need for extracting patterns
from an existing system.

We assert that such a formal solution should be imple-
mentation language independent, much as design patterns
are, if it is to truly capture universal concepts of program-
ming methodology. We further assert that a formal denota-



tion for pattern concepts should be a larger part of the for-
mal semantics literature. Patterns are built on the theory
and concepts of object-oriented programming, as surely as
object-oriented approaches are built on procedural theory.

We begin with describing our driving problem, provid-
ing a concrete example system. We then discuss the related
work in the field of automated pattern extraction, leading
into a brief introduction to our EDPs. We show how these
EDPs can be formally expressed in a version of the sigma
(ς) calculus [1], that we have extended withreliance op-
erators. We illustrate our method with a chain of pattern
composition from our EDPs to the Decorator pattern. We
then show how to derive an instance of Decorator from our
example scenario using automatable reduction rules that are
processed by a theorem prover.

2. Problem scenario

At Widgets, Inc., there are many teams working on the
next Killer Widget application. Each is responsible for a
well-defined and segmented section of the app, but they are
encouraged to share code and classes where possible. As
is normal in many such situations, teams have write access
only for their own code - they are responsible for it, and all
changes must be cleared through regular code reviews. All
other teams may inspect the code, but may not change it.
Suggestions can be made to the team in charge, to be con-
sidered at the next review, but no one likes their time wasted,
and internal changes take priority during such reviews.

A legacy library exists (call it BaseLib, shown in Figure
1) that is heavily used throughout Killer Widget. One of the
core pieces of this library is the File hierarchy, a class tree
for cross-platform file handling, which has been used since
the 1.0 release of the product. The Measurer hierarchy is a
class tree for gathering statistical data on the performance of
key classes. Originally designed as a temporary fix using an
Adapter pattern (with object compositing) to wrap existing
classes, it quickly became used for several key pieces of
new code when the 2.0 release deadline loomed. By the 4.0
release, the entire code base had been migrated to use the
MeasuredFile class instead of the more natural File class,
even though by that time it was obvious that the Measurer
classes probably should have been implemented differently.
The source code for the entire library is large, unwieldly,
and, frankly, no one still at Widgets, Inc. is quite sure what
is in it. The official policy, due to the critical nature of the
library, is that no changes will be incorporated into BaseLib.

With the 5.0 release, Team A, in charge of core file ac-
cess, has been tasked with making the File concept more
flexible, to allow new UI behaviour. (Specifically, the UI
team has determined that it would be highly useful for Killer
Widget to be able to handle the dropping of a folder onto its
icon, as well as a file.) They diligently add to the hierar-
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Figure 1. BaseLib
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Figure 2. BaseLib + Team A’s 5.0 additions

chy under File, and, in the process, include the concept of
FilePile as a bundle for Files, to allow the application to
handle collections of files internally. FilePile must, how-
ever, access File objects through MeasuredFile to gain the
statistics gathering capability used for systematic testing,
and to be consistent with the rest of the system. It is messy,
but with the existing code using MeasuredFile in a pervasive
manner and without the authorization to change the Mea-
suredFile class, they are limited in their options. Team A’s
efforts are shown with the BaseLib in Figure 2.

For 5.1, Team B, in charge of one of the Widget mod-
ules, has been assigned to fix a problem with their mishan-
dling of FilePiles. They determine that the bad assumptions
on how to use FilePile pop up in a tremendous number of
places in their code and, instead of changing each and every
location, they are best served by subclassing FilePile and
making the changes there in a single method for their local
use. They can then alter the very few places in their code
where FilePile objects are created or passed in. Since the
results of FilePile’s operation arenearly correct, and they
do not want to replicate FilePile’s code (and thereby incur a
new testing responsibility), they extend the method by call-
ing FilePile’s implementation, and performing a bit of data
massaging on the information returned for each file. The
system is now show in Figure 3.

For 6.0, it is decided that a massive code review is in or-
der and a new group of developers is brought on to take over
the responsibilities of the members of the Teams that have
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Figure 3. Killer Widget 5.1

been promoted to the code review team. The architecture in
Figure 3 is just a small sample of the hundreds of classes in
the system, sections of which are owned by various teams.

What insight into the behaviour of the codebase would
help both the new engineers and the review board? Hidden
patterns exist within the architecture that encapsulate the
intent of the larger system, that would facilitate the compre-
hension of the novice developers, and would help point the
architects towards a useful refactoring of the system. We
will use this as our driving example.

3. Related work

The decomposition and analysis of patterns is an estab-
lished idea, and the concept of creating a hierarchy of re-
lated patterns has been in the literature almost as long as pat-
terns themselves [6, 12, 19, 24]. The few researchers who
have attempted to provide a formal basis for patterns have
most commonly done so from a desire to perform refactor-
ing of existing code, while others have attempted the more
pragmatic approach of identifying core components of ex-
isting patterns in use. Additionally, there is ongoing philo-
sophical interest in the very nature of coding abstractions,
such as patterns and their relationships.

3.1. Refactoring approaches

Attempts to formalize refactoring [10] exist, and have
met with fairly good success to date[7, 15, 17]. The primary
motivation is to facilitate tool support for, and validation of,
transformation of code from one form to another while pre-
serving behaviour. This is an important step in the main-
tenance and alteration of existing systems, and patterns are
seen as the logical next abstraction upon which they should
operate. Such techniques include fragments, as developed
by Florijm, Meijers, and van Winsen [9], Eden’s work on
LePuS [8], andÓ Cinńeide’s work in transformation and
refactoring of patterns in code [16] through the application
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Figure 4. Objectifier

of minipatterns. These approaches have one missing piece:
appropriate flexibility of implementation.

3.2. Structural analyses

An analysis of the ‘Gang of Four’ (GoF) patterns [11]
reveals many shared structural and behavioural elements,
such as the similarities between Composite and Visitor [11].
The relationships between patterns, such as inclusion or
similarity, have been investigated by various practitioners,
and a number of meaningful examples of underlying struc-
tures have been described [4, 6, 19, 22, 23, 24].

Objectifier: The Objectifier pattern [24] is one such ex-
ample of a core piece of structure and behaviour shared be-
tween many more complex patterns. Its Intent is to

Objectify similar behaviour in additional classes,
so that clients can vary such behaviour inde-
pendently from other behaviour, thus supporting
variation-oriented design. Instances from those
classes represent behaviour or properties, but not
concrete objects from the real world (similar to
reification).

Zimmer uses Objectifier as a ‘basic pattern’ in the construc-
tion of several other GoF patterns, such as Builder, Ob-
server, Bridge, Strategy, State, Command and Iterator. It
is a simple yet elegantly powerful structural concept that is
used repeatedly in other patterns.

Object Recursion: Woolf takes Objectifier one step fur-
ther, adding a behavioural component, and naming it Object
Recursion [23]. The class diagram in Figure 5 is extremely
similar to Objectifier, with an important difference, namely
the behaviour in the leaf subclasses ofHandler. Exclusive
of this method behaviour, however, it looks to be an ap-
plication of Objectifier in a more specific use. Note that
Woolf compares Object Recursion to the relevant GoF pat-
terns and deduces that: Iterator, Composite and Decorator
can, in many instances, be seen as containing an instance of
Object Recursion; Chain of Responsibility and Interpreter
do contain Object Recursion as a primary component.
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3.3. Conceptual relationships

Taken together, the above instances of analyzed pat-
tern findings comprise two parts of a larger chain: Ob-
ject Recursion contains an instance of Objectifier, and both
in turn are used by larger patterns. This indicates that
there are meaningful relationships between patterns, yet
past work has shown that there are more primary forces at
work. Buschmann’s variants [5], Coplien and others’ id-
ioms [3, 6, 14], and Pree’s metapatterns [18] all support
this viewpoint. Shull, Melo and Basili’s BACKDOOR’s
[20] dependency on relationships is exemplary of the nor-
mal static treatment that arises. It will become evident that
these relationships betweenconceptsare a core piece of al-
lowing great flexibility to the practitioner implementing pat-
terns in design, through constructs we termisotopes, which
will be treated in Section 5.4.

4. The EDP catalog

Our first task was to examine the existing patterns start-
ing with the Gang of Four [11]. Instead of a purely struc-
tural inspection, we identified common concepts used in
the patterns, resulting in eight identified core concepts. Of
these, five involved method invocation, leading us to inves-
tigate method interactions more abstractly. The abstractions
found are classifiable along three orthogonal axes: the rela-
tionship between the calling object and the receiver of the
method message; the relationship between thetypesof the
calling and receiving objects; the relationship between the
signatures of the calling and invoked methods.

The remaining component abstractions from the GoF
patterns consisted of abstractions related to object creation,
abstract interface of methods, and object retrieval seman-
tics. These combined with our method call invocations and
type subsumption result in our EDPs.

We present in this paper a listing of the identified EDPs,
in Figure 6. We do not claim that this list covers all the
possible permutations of interactions, but that these are the

Object Element EDPs
CreateObject AbstractInterface
Retrieve

Type Relation EDPs
Inheritance

Method Invocation EDPs
Redirect Delegate
Recursion Conglomeration
ExtendMethod RevertMethod
RedirectInFamily DelegateInFamily
RedirectedRecursion RedirectInLimitedFamily
DelegateInLimitedFamily DelegatedConglomeration

Figure 6. Elemental Design Patterns

core catalog of EDPs upon which others will be built. A
more complete discussion of the EDPs can be found in [21],
but we will provide a detailed example of one in Section 5.3.

At first glance, these EDPs seem unlikely to be very use-
ful, as they appear to be positively primitive... and they
are. These are the core primitives that underlie the con-
struction of patterns in general. According to Alexander
[2] patterns are descriptions of relationships between enti-
ties, and method invocations and typing are the processes
through which objects interact. We believe that we have
captured the elemental components of object oriented lan-
guages, and the base relationships used in the vast majority
of software engineering. If patterns are the frameworks on
which we create large understandable systems, then these
are the nuts and bolts that comprise the frameworks.

5. Formalization

Source code is, at its root, a mathematical symbolic lan-
guage with well formed reduction rules. We strive to find
an appropriately formal analogue for the formal side of pat-
terns. A full, rigid formalization of objects, methods, and
fields would only be another form of source code, invariant
under some transformation from the actual implementation.
This defeats the purpose of patterns. We must find another
aspect of patterns to encode as well, in order to preserve
their flexibility.

5.1. Sigma calculus

Desired traits of a formalization language include that it
be mathematically sound, consist of simple reduction rules,
have enough expressive power to encode directly object-
oriented concepts, and have the ability to encode flexibly
relationships between code constructs. The sigma calculus



[1] is our choice for a formal basis, given the above require-
ments. It is a formal denotational semantics that deals with
objects as primary components of abstraction, and has been
shown to have a highly powerful expressiveness for various
language constructs.

It is not without its drawbacks, however. Not only is
it extremely unwieldly, but also it suffers from a complete
rigidity of form, and does not offer any room for interpreta-
tion of the implementation description. This lack of adap-
tiveness means that there would be an explosion of defini-
tions for even a simple pattern, each of which conformed
to a single particular implementation. This breaks the dis-
tinction that patterns are implementation independent de-
scriptions, as well as creating an excessively large library of
possible pattern forms to search for in source code.

5.2. Reliance operators: the rho calculus

It is fortunate then, thatς-calculus is simple to extend.
We propose a new set of rules and operators withinς-
calculus to support directly relationships and reliances be-
tween objects, methods and fields.

Thesereliance operators, as we have termed them (the
word ‘relationship’ is already overloaded in the current lit-
erature, and only expresses part of what we are attempting
to deliver), are direct, quantifiable expressions of whether
one element (an object, method, or field), in any way relies
or depends on the existance of another for its own definition
or execution, and to what extent it does so.

This approach provides more detail than the formal de-
scription provided by UML however, as the calculus com-
prised ofς-calculus and the reliance operators, orrho cal-
culusencodes entire paths of reliances in a concise notation.
All the reliances and relationships in the UML graphing sys-
tem are encoded within the element that is under scrutiny,
reducing the need for extended, and generally recursive,
analysis for each element when needed.

We would like to continue the general notation ofς-
calculus, so we adopt the operator used for subsumption,
<:, and provide a similar sign,�, that indicates a reliance
relationship. Ifa � b, thena relies onb in some manner.
It may be the interface, the implementation, a data mem-
ber access, or a particular method call ofb which is relied
on bya for proper definition and operation. Differentiating
between these paths of reliance is a bit more challenging.

For the purposes of this paper we give only a brief de-
scription of the needed reliance operators. First,�m, indi-
cating a method invocation reliance. Given the expression
a.f �m b.g, it indicates that within the body of method
f in objecta, a call is made to methodg of object b. A
refinement of this is�m−, which denotes that methodsf
andg have no signature relationship (see [21] for a full ex-
planation of the importance of this distinction), while�m+

FamilyHead

operation()

Redirecter

operation()

target

target.operation();

Figure 7. RedirectInFamily class structure

states thatf andg have the same invocation signature.

Our data field requirements for this paper are satisfied
by the use of�f . If a.f �f b, then objecta’s methodf
uses the objectb in some manner. All of the above have
well defined transitivity properties, as well as hierarchical
implications: ifa.f � b.g, then obviouslya � b.g, a.f �
b, anda � b. Finally, we have<:, for inheritance (or more
properly subsumption of type), showing a type reliance.

5.3. Example: RedirectInFamily

Consider the class diagram for the structure of the EDP
RedirectInFamily [21], in Figure 7. Taken literally, it
specifies that a class wishes to invoke a similar method
(where similarity is evaluated based on the signature types
of the methods, as hinted at by Beck’s Intention Revealing
Message best practice pattern [3]) to the one currently being
executed, and it wishes to do so on an object of its parent
class’ type. This sort of open-ended structural recursion is
a part of many patterns.

If we take the Participants specification of
RedirectInFamily , we find that:

• FamilyHead defines the interface, contains a method
to be possibly overridden.

• Redirecter uses interface of FamilyHead through in-
heritance, redirects internal behaviour back to an in-
stance of FamilyHead to gain polymorphic behaviour
over an amorphous object structure.



We can express each of these requirements inς-calculus:

FamilyHead ≡ [operation : A] (1)

Redirecter <: FamilyHead (2)

Redirecter ≡ [target : FamilyHead,

operation : A = ς(xi){target.operation}]
(3)

r : Redirecter (4)

fh : FamilyHead (5)

r.target = fh (6)

This is a concrete implementation of the
RedirectInFamily structure, but fails to capture
the reliance ofRedirecter.operation on the behaviour of
FamilyHead.operation. It also has an overly restrictive
requirement concerningr’s ownership of target, when
compared to many implementations of this pattern. So, we
introduce our reliance operators to produce aρ-calculus
definition:

r.operation �m+ r.target.operation (7)

r �f r.target (8)

We can reduce two areas of indirection...

r.target = fh, r.operation �m+ r.target.operation

r.operation �m+ fh.operation
(9)

r �f r.target, r.target = fh

r �f fh
(10)

...and now we can produce a set of clauses to represent
RedirectInFamily:

Redirecter <: FamilyHead,
r : Redirecter,
fh : FamilyHead,
r.operation �m fh.operation,
r �f fh

RedirectInFamily(Redirecter,
FamilyHead, operation)

(11)

5.4. Isotopes

Common wisdom holds that formalization of patterns in
a mathematical notation will inevitably destroy the flexibil-
ity and elegance of patterns. An interesting side effect of
expressing our EDPs in theρ-calculus, however, is anin-
creasedflexibility in expression of code while conforming
to the coreconceptof a pattern. We term variations of code
expression that conform to the concepts and roles of an EDP
isotopes.

Consider now Figure 8, which, at first glance, does not
look much like our original specification. We have intro-
duced a new class to the system, and our static criteria that

FamilyHead

operation()

Redirecter

operation()

mediary

mediary.operation2();

Mediary

operation2()

object

object.operation();

Figure 8. RedirectInFamily Isotope

the subclass’ method invoke the superclass’ instance has
been replaced by a new calling chain. In fact, this con-
struction looks quite similar to the transitional state while
applying Martin Fowler’sMove Methodrefactoring [10].

We claim that this is precisely an example of a variation
of RedirectInFamily when viewed as a series of formal
constructs, as in Equations 12 through 20.

Redirection <: FamilyHead (12)

r : Redirection (13)

fh : FamilyHead (14)

r.mediary = m (15)

m.object = fh (16)

r.operation �m− r.mediary.operation2 (17)

m.operation2 �m− m.object.operation (18)

r.operation �f r.mediary (19)

m.operation �f m.object (20)

If we start reducing this equation set, we find that we can
perform an equality operation on Equations 15 and 17:

r.operation �m− r.mediary.operation2,
r.mediary = m

r.operation �m− m.operation2
(21)

We can now reduce this chain with Equation 18:

r.operation �m− m.operation2,
m.operation2 �m− m.object.operation

r.operation �m+ m.object.operation
(22)

r.operation �m+ m.object.operation, m.object = fh

r.operation �m+ fh.operation
(23)

Likewise, we can take Equations 15, 16, 19 and 20:



r.operation �f r.mediary,
m.operation �f m.object,

r.mediary = m,
m.object = fh

r �f fh
(24)

If we now take Equations 12, 13, 14, 23, and 24 we find
that we have satisfied the clause requirements set in our
original definition of RedirectInFamily, as per Equa-
tion 11. This alternate structure is an example of anisotope
of theRedirectInFamily pattern, and required no adap-
tation of our existing rule. Our single rule takes the place of
an enumeration of static pattern definitions. The concepts of
object relationshipsandrelianceare the key. It is worth not-
ing that while this may superficially seem to be equivalent to
the common definition ofvariant, as defined by Buschmann
[5], there is a key difference: encapsulation. Isotopes may
differ from the strict pattern structure in their implemen-
tation, but they provide fulfillment of the various roles re-
quired by the pattern and therelationshipsbetween those
roles are kept intact. From the view of an external call-
ing body, the pattern is precisely the same no matter which
isotope is used. Variants are not interchangeable without
retooling the surrounding code, but isotopes are. This is
an essential requirement of isotopes, and precisely why we
chose the term. This flexibility in internal representation
grants the implementation of the system a great degree of
latitude, while still conforming to the abstractions given by
design patterns.

6. Reconstruct known patterns

We can now demonstrate an example of using EDPs to
express larger and well known design patterns. We begin
with AbstractInterface, a simple EDP, and build our
way up to Decorator, visiting two other established patterns
along the way.

6.1. AbstractInterface

AbstractInterface ensures that the method in a base
class is truly abstract, forcing subclasses to override and
provide their own implementations. Theρ-calculus defi-
nition can be given by simply using the trait construct of
ς-calculus:

A ≡ [new : [li : A → Bi
i ∈ 1...n], operation : A → B]

AbstractInterface(A, operation)
(25)

6.2. Objectifier

Objectifier is simply a class structure applying the In-
heritance EDP to an instance ofAbstractInterface pat-

tern, where theAbstractInterface applies to all methods
in a class. This is equivalent to what Woolf calls an Abstract
Class pattern. Referring back to Figure 4 from our earlier
discussion in section 3.2, we can see that the core concept
is to create a family of subclasses with a common abstract
ancestor. We can express this inρ-calculus as:

Objectifier : [li : Bi
i∈1...n],

AbstractInterface(Objectifier, li
i∈1...n),

ConcreteObjectifierj <: Objectiferj∈1...m,
Client : [obj : Objectifier]
Objectifier(Objectifier

ConcreteObjectifierj
j∈1...m, Client)

(26)

6.3. Object Recursion

We briefly described Object Recursion in section 3.2,
and gave its class structure in Figure 5. We now
show that this is a melding of theObjectifier and
RedirectInFamily patterns, as illustrated in Figure 9.
The annotations indicate which roles of which patterns the
various components ofObjectRecursion play. A formal
EDP representation is given in Equation 27.

Objectifier(Handler,Recurseri
i∈1...m, Initiator),

Objectifier(Handler, Terminatorj
j∈1...n,

Initiator),
init �m obj.handleRequest,
init : Initiator,
obj : Handler,
RedirectInFamily(Recurser, Handler,

handleRequest),
!RedirectInFamily(Terminator, Handler,

handleRequest)

ObjectRecursion(Handler,Recurseri
i∈1...m,

T erminatorj
j∈1...n, Initiator)

(27)

6.4. ExtendMethod

The ExtendMethod EDP is used to extend, not re-
place, the functionality of an existing method in a super-
class. Figure 10 shows the structure of the pattern, illustrat-
ing the use ofsuper, formalized in Equation 28.

OriginalBehaviour : [li : Bi
i∈1...m, operation : Bm+1],

ExtendedBehaviour <: OriginalBehaviour,
eb : ExtendedBehaviour,
eb.operation �m+ super.operation

ExtendMethod(OriginalBehaviour,
ExtendedBehaviour, operation)

(28)
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Operation()
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Operation() added behaviour...
OriginalBehaviour::Operation();
added behaviour...

Figure 10. ExtendMethod

6.5. Decorator

Now we can produce a pattern directly from the GoF
text, theDecorator pattern. Figure 11 is the standard
class diagram forDecorator annotated to show how the
ExtendMethod andObjectRecursion patterns inter-
act. Again, we provide a formal definition in Equation 29,
although only for the method extension version (the field
extension version is similar but unnecessary for our pur-
poses here). The keywordany indicates that any object of
any class may take this role, as long as it conforms to the
definition ofObjectRecursion.

We have now created a formally sound definition of how
to solve a problem in software architecture design. This
definition is now subject to formal analysis, discovery, and
metrics, and, following our example of pattern composition,
can be used as a building block for larger, even more intri-
cate patterns that areincrementallycomprehensible. At the
same time, we believe we have retained the flexibility of im-
plementation, and the conceptual semantics of the pattern,

Component
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operation()
addedBehaviour()

ConcreteDecoratorA

operation()

ConcreteComponent

operation()

Decorator

operation()

component

component.operation()

Decorator::operation();
addedBehaviour();

ExtendMethod:OriginalBehaviour
ObjectRecursion:Recurser

ExtendMethod:ExtendedBehaviour

Object Recursion:Terminator

Object Recursion:Handler

Figure 11. Decorator annotated to show EDP
roles

by making precise choices of abstraction at each stage of
the composition. Furthermore, by building this approach
on an existing denotational semantics for object oriented
programming (ς-calculus), we continue to be able to pro-
cess the same system at an extremely low level. One of the
key contributions of this system, however, is that the prac-
titioner canchooseon which level to operate, and perform
the analyses and tasks which are suitable without losing the
flexibility of integrating other layers of analysis at a later
date.

7. Widget, Inc. revisited

So how does this help our intrepid engineers at Widget,
Inc? Let us start with their source code, and assume that
the Killer Widget compiler system can produce a diagnostic
parse tree, as the GNUgcc system does. A syntactic anal-
ysis of the parse tree and translation intoρ-calculus gives us
a large body of facts about the system, a very few of which
are given in Equations 30 through 42.

At this point we can encode the aboveρ-calculus facts
into a form usable by one of several automated theorem
provers, such as OTTER [13], and search for the most basic

ObjectRecursion(Component,Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,any),

ExtendMethod(Decorator,

ConcreteDecoratorBk
k∈1...o, operationk∈1...o

k ),

Decorator(Component,Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,

ConcreteDecoratorBk
k∈1...o,

ConcreteDecoratorAl
l∈1...p,

operationk∈1...o+p
k )

(29)



File ≡ [op1 : File → []] (30)

FileFAT <: File (31)

fp : FileP ile (32)

FileP ile <: File (33)

fp.op1 <<m− mfile.op2 (34)

FileP ile.mfiles <<f MeasuredF ile (35)

mf : MeasuredF ile (36)

MeasuredF ile.file <<f File (37)

MeasuredF ile.op2 <<f MeasuredF ile.file (38)

mf.op2 <<m− file.op1 (39)

fpf : FileP ileF ixed (40)

FileP ileF ixed <: FileP ile (41)

FileP ileF ixed.op1 <<m+ super.op1 (42)

FileP ile <: File,
fp : FileP ile,
f : File,
fp.op1 �m− fp.mfile.op2,
fp.mfile = mf,
mf.op2 �m− mf.file.op2,
mf.file = f,
fp.op1 �f fp.mfile,
mf.op2 �f mf.file

RedirectInFamily(FileP ile, F ile, op1)
(44)

EDPs, then work our way up to more complex patterns, as
in ourDecorator example.

We can quickly see that Eq 30 fulfills our
AbstractInterface rule for classFile, method op1.
Furthermore,File andFileP ile fulfill the requirements of
theObjectifier pattern, assuming, as we will here assert,
that the remainder ofFile’s methods are likewise abstract.

File : [op1 : []],
AbstractInterface(File.op1),
F ileP ile <: File,
MeasuredF ile <<f File

Objectifier(File, F ileP ile,MeasuredF ile)
(43)

Objectifier(File, F ileFAT, MeasuredF ile) and
analogous instances ofObjectifier for the other concrete
subclasses of the File class, can be similarly derived.

Finding an instance ofRedirectInFamily is a bit
more complex, and requires the use of our isotopes. Follow-
ing the example in Section 5.4, however, it becomes straight
forward to deriveRedirectInFamily,

It can be shown also that onecannot derive
RedirectInFamily(FileFAT, File, op1). We now

Objectifier(File, F ileP ile,MeasuredF ile),
Objectifier(File, F ileFAT, MeasuredF ile),
mf : MeasuredF ile,
mf � mfile.op1,
file : File,
RedirectInFamily(FileP ile, F ile, op1),
!RedirectInFamily(FileFAT, F ile, op1)

ObjectRecursion(File, F ileP ile,
F ileFAT,MeasuredF ile)

(45)

see thatObjectRecursion derives cleanly from Equa-
tions 43 and 44 and their analogues, in Equation 45.
ExtendMethod is a simple derivation as well:

FileP ile ≡ [op1 : any],
F ileP ileF iled <: FileP ile,
fpf : FileP ileF ixed,
fpf.op1 �m+ super.op1

ExtendMethod(FileP ile, F ileP ileF ixed, op1)
(46)

Finally, we arrive at the uncovering of a fullDecorator
pattern:

ObjectRecursion(File, F ileP ile, F ileFAT,
MeasuredF ile),

ExtendMethod(FileP ile, F ileP ileF ixed, op1),
Decorator(File, F ileP ile, F ileFAT,

F ileP ileF ixed, op1)
(47)

Similarly, we can uncover the latentComposite pat-
tern in the architecture. Both GoF pattern implementations
are annotated in Figure 12. The intermediate patterns have
been left out for clarity, as have finer granularity relation-
ships. The annotations indicate which classes fulfill which
roles in the pattern descriptions, asPattern::Role. Note that
a single class can fulfill more than one role in more than one
pattern.

The revealed patterns are, to be honest, not hard to spot
in this small example. Real life, however, tends to leave us
with a lack of sufficient documentation, and even reverse
engineering tools that extract architectural diagrams are not
going to explicitly reveal the hidden patterns in a system of
several hundred classes. In the cases where pattern recogni-
tion does occur, it frequently relies on the implementation
of patterns to be an exact match to some predefined tem-
plate. Isotopes remove this restriction, instead letting the
relationships in the code reduce to reliance paths in a natu-
ral way. This formalized method is useful precisely because
it is can be made automatic, deriving from syntactic analy-
sis of the parse tree of the original source code a system of
facts about the architecture, and then using theorem solving



File

op1()

FilePile

op1()

MeasuredFile

op2()FileFAT

op1()

FilePileFixed

op1()

FileHFS

op1()

....... file

files

file.op1()

Measurer

op2()

.......

for each file in files
     file.op2()

FilePile::op1()
....

Decorator::Component
Composite::Component

Decorator::ConcreteComponent
Composite::Leaf

Decorator:ConcreteDecorator

Decorator::Decorator
Composite::Composite

Decorator::support
Composite::Client
Composite::support

Figure 12. Discovered patterns

systems such as OTTER, to produce explicit illustrations of
pattern implementation. Just such a tool set is currently un-
der development and industry validation test cases are avail-
able.

At this point the review team at Widgets, Inc. can
quickly see that there are areas that could use some con-
ceptual cleaning, have been given pointers as to where the
problem lies, and have also been shown which classes and
methods are required for each pattern to continue working.
This last point may direct the team to start refactoring in a
meaningful and well-defined manner.

8. Acknowledgments

The authors would like to acknowledge the contributions
of our readers, and the financial support of EPA Project #
R82 - 795901 - 3.

References

[1] M. Abadi and L. Cardelli.A Theory of Objects. Springer-
Verlag New York, Inc., 1996.

[2] C. W. Alexander. Notes on the Synthesis of Form. Oxford
Univ Press, 1964. Fifteenth printing, 1999.

[3] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall,
1997.

[4] J. Bosch. Design patterns as language constructs.Journal
of Object Oriented Programming, 1(2):18–52, May 1998.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented System Architecture: A System of
Patterns. John Wiley & Sons, 1996.

[6] J. Coplien. C++ idioms. InProceedings of the Third Eu-
ropean Conference on Pattern Languages of Programming
and Computing, July 1998.

[7] S. Demeyer, S. Ducasse, and O. Nierstrsz. Finding refac-
toring via change metrics. InProceedings of the conference
on Object-oriented programming, systems, languages, and
applications, pages 166–177. ACM Press, nov 2000.

[8] A. H. Eden. Precise Specification of Design Patterns and
Tool Support in their Application. PhD thesis, Tel Aviv Uni-
versity, Tel Aviv, Israel, 1999. Dissertation Draft.

[9] G. Florijn, M. Meijers, and P. van Winsen. Tool support
for object-oriented patterns. In M. Askit and S. Matsuoka,
editors,Proc. of the 11th European Conf. on Object Oriented
Programming - ECOOP’97. Springer-Verlag, Berlin, 1997.

[10] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison Wesley, 1995.

[12] B. B. Kristensen. Complex associations: abstractions in
object-oriented modeling. InProc of the ninth annual con-
ference on Object-oriented programming systems, language,
and applications, pages 272–286. ACM Press, 1994.

[13] W. McCune. Otter 2.0 (theorem prover). In M. E. Stickel,
editor,Proc. of the 10th Intl Conf. on Automated Deduction,
pages 663–664, July 1990.

[14] S. Meyers.Effective C++. Addison-Wesley, 1992.
[15] I. Moore. Automatic inheritance hierarchy restructuring and

method refactoring. InProc. of the eleventh annual confer-
ence on Object-oriented programming systems, languages,
and applications, pages 235–250. ACM Press, 1996.
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