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Abstract

Sequential pattern mining is an important data min-
ing task with broad applications. However, conven-
tional methods may meet inherent difficulties in min-
ing databases with long sequences and noise. They may
generate a huge number of short and trivial patterns but
fail to find interesting patterns approximately shared by
many sequences. To attack these problems, in this pa-
per, we propose the theme of approximate sequential
pattern mining roughly defined as identifying patterns
approximately shared by many sequences. We present
an efficient and effective algorithm, ApproxMAP (for
APPROXimate Multiple Alignment Pattern mining), to
mine consensus patterns from large sequence databases.
The method works in two steps. First, sequences are
clustered by similarity. Then, consensus patterns are
mined directly from each cluster through multiple align-
ment. A novel structure called weighted sequence is
used to compress the alignment result. For each clus-
ter, the longest consensus pattern best representing the
cluster is generated from its weighted sequence. Our ex-
tensive experimental results on both synthetic and real
data sets show that ApproxMAP is robust to noise and
both effective and efficient in mining approximate se-
quential patterns from noisy sequence databases with
lengthy sequences. In particular, we report a successful
case of mining a real data set which triggered important
investigations in welfare services.

1 Introduction

Given a sequence database, a sequential pattern is a
subsequence that appears frequently in the database.
Since it has been proposed in [2], mining sequential
patterns in large databases has become an important
data mining task and has broad applications, such
as business analysis, web mining, security, and bio-
sequences analysis.

For example, supermarkets often collect customer
purchase records in sequence databases. Sequential
patterns in customer purchase database may indicate
customers’ buying habits and can be used to design
promotion campaigns.

Most of the previous researches on sequential pat-
tern mining adopt an exact matching approach. A pat-
tern is supported by sequences in the database only if
the pattern exactly repeats in the sequences. A sequence
is regarded as a sequential pattern if the number of its
occurrences in the sequence database passes a user spec-
ified support threshold. In general, two kinds of algo-
rithms have been developed to find the complete set of
sequential patterns.

First, the appriori-like breadth-first search methods,
such as GSP [21] and SPADE [26], conduct a level-by-
level candidate-generation-and-test pruning following
the Apriori property: any super-pattern of an infrequent
pattern cannot be frequent. In the first scan, they
find the length-1 sequential patterns, i.e., single items
frequent in the database. Then, length-2 candidates
are assembled using length-1 sequential patterns. The
sequence database is scanned the second time and
length-2 sequential patterns are found. At each level,
only potentially frequent candidates are generated and
tested.

Second, the projection-based depth-first search
methods, such as PrefixSpan [16], FreeSpan [12], and
SPAM [3], avoid the costly candidate-generation-and-
test operations by growing long patterns from short
ones. Once a sequential pattern is found, all sequences
containing that pattern are collected as a projected
database. Local frequent items are found in the pro-
jected databases and used to extend the current pattern
to longer ones.

Although sequential pattern mining has been exten-
sively studied and many methods have been proposed,
there are two inherent obstacles within the conventional
framework.

• Most methods mine sequential patterns with exact
matching. That is, a pattern gets support from a
sequence in the database if and only if the pattern
is exactly contained in the sequence. However, the
exact matching approach often may not find general
long patterns in the database. For example, many
customers may share similar buying habits, but few
of them follow an exactly same buying pattern.



Thus, to find non-trivial interesting long patterns,
we must consider mining approximate sequential
patterns.

• Most methods mine the complete set of sequential
patterns. When long patterns exist, mining the
complete set of patterns is ineffective and inefficient.
For example, if 〈a1 · · · a20〉 is a sequential pattern,
then each of its subsequence is also a sequential
pattern. There are (220 − 1) patterns in total! On
one hand, it is very hard for users to understand and
manage a huge number of patterns. On the other
hand, computing and storing a huge number of
patterns is very expensive or even computationally
prohibitive. In many situations, a user may just
want the long patterns that cover many short ones.

Recently, mining compact expressions for frequent
patterns, such as max-patterns [4] and frequent
closed patterns [15], has been proposed and studied
in the context of frequent itemset mining. However,
mining max-sequential patterns or closed sequential
patterns is far from trivial. Furthermore, in a noisy
sequence database, the number of max- or closed
sequential patterns still can be huge, and many of
them are trivial for users.

In this paper, we propose an effective and efficient
framework for mining sequential patterns in databases
of long sequences, and make the following contributions.

• We propose the theme of approximate sequential
pattern mining. The general idea is that, instead
of finding exact patterns, we identify patterns ap-
proximately shared by many sequences.

• Instead of mining a huge set of patterns, we propose
to mine consensus patterns from databases of long
sequences. Intuitively, a consensus pattern is shared
by many sequences and covers many short patterns.
Consensus patterns are more expressive and are
more useful in many applications.

• We develop an efficient algorithm, ApproxMAP (for
APPROXimate Multiple Alignment Pattern min-
ing), to mine consensus sequential patterns from
large databases. ApproxMAP finds the underlying
consensus patterns directly from multiple align-
ment. It is effective and efficient for mining long
sequences and is robust to noise. We conduct
an extensive and systematic performance study
over synthetic data sets. The results show that
ApproxMAP is effective and scalable in mining large
sequence databases with long patterns.

• We report a successful case study of ApproxMAP in
a real application: mining the North Carolina State
Welfare Services database. We illustrate some in-
teresting patterns mined by ApproxMAP. Moreover,
the mining result of ApproxMAP triggered some im-
portant investigations which help to improve the
real business. The application results show that
approximate sequential pattern mining can find in-
teresting patterns that is highly promising in many
applications.

The remainder of the paper is organized as follows.
Section 2 defines the problem. Section 3 and 4 demon-
strate the ApproxMAP method in detail. An extensive
performance study is reported in Section 5. Particularly,
in Section 6, we showcase a successful case of mining
the North Carolina State Welfare Services database us-
ing ApproxMAP. In Section 7, we discuss related work.
Section 8 concludes the paper.

2 Problem Definition

Let I = {i1, . . . , il} be a set of items. An itemset X =
{ij1 , . . . , ijk} is a subset of I. Conventionally, itemset
X = {ij1 , . . . , ijk} is also written as (xj1 · · ·xjk). A
sequence S = 〈X1 . . . Xn〉 is an ordered list of itemsets,
where X1, . . . , Xn are all itemsets. A sequence database
SDB is a multi-set of sequences.

A sequence S1 = 〈X1 · · ·Xn〉 is called a subsequence
of sequence S2 = 〈Y1 · · ·Ym〉, and S2 a super-sequence of
S1, if n ≤ m and there exist integers 1 ≤ i1 < · · · < in ≤
m such that Xj ⊆ Yij (1 ≤ j ≤ n). Given a sequence
database SDB, the support of a sequence P , denoted
as sup(P ), is the number of sequences in SDB that are
super-sequences of P . Conventionally, a sequence P is
called a sequential pattern if sup(P ) ≥ min sup, where
min sup is a user-specified minimum support threshold.

In many applications, people prefer long sequential
patterns shared by many sequences. However, due to
noise, it is very difficult to find a long sequential pattern
exactly shared by many sequences. Instead, many
sequences may approximately share a long sequential
pattern.

Motivated by the above observation, we introduce
the notion of mining approximate sequential patterns.
Let dist be a normalized distance measure of two
sequences with domain [0, 1]. For sequences S, S1 and
S2, if dist(S, S1) < dist(S, S2), then S1 is said be more
similar to S than S2 is.

Näıvely, we can extend the conventional sequential
pattern mining framework to get an approximate se-
quential pattern mining framework as follows. Given a
minimum distance threshold min dist, the approximate
support of a sequence P in a sequence database SDB



is defined as s̃up(P ) = ‖{S|(S ∈ SDB) ∧ (dist(S, P ) ≤
min dist)}‖. (Alternatively, the approximate support
can be defined as s̃up(P ) =

∑
S∈SDB dist(S, P ). All the

following discussion retains.) Given a minimum support
threshold min sup, all sequential patterns whose ap-
proximate supports passing the threshold can be mined.

Before we make any commitment, let us examine
whether the above framework is good. Unfortunately,
it may suffer from the following two problems.

First, the mining may find many short and probably
trivial patterns. Short patterns tend to be easier to get
similarity counts from the sequences than long patterns.
Thus, short patterns may overwhelm the results.

Second, the complete set of approximate sequential
patterns may be larger than that of exact sequential pat-
terns and thus difficult to understand. By approxima-
tion, a user may want to get and understand the general
trend and ignore the noise. However, a näıve output of
the complete set of approximate patterns in the above
framework may generate many (trivial) patterns and
thus ruin the mining.

Based on the above analysis, we need to explore
a more effective solution. We propose ApproxMAP, a
cluster and multiple alignment-based approach, which
works in two steps.

1. Sequences in a database are clustered based
on similarity. Sequences in the same cluster may
approximately follow some similar patterns.

2. The longest approximate sequential pattern
for each cluster is generated. It is called the
consensus pattern. To extract consensus patterns,
a weighted sequence is derived for each cluster
using multiple alignment to compress the sequential
pattern information in the cluster. And then the
longest consensus pattern best representing the
cluster is generated from the weighted sequence.

Compared to the exact matching models and
the näıve approximate pattern mining model,
ApproxMAP has several distinct features.

1. ApproxMAP finds approximate sequential patterns
from clusters based on multiple alignment. Even
though a pattern is not exactly contained by many
sequences, as long as it is shared by many sequences
in the sense of multiple alignment, it will be identi-
fied by ApproxMAP.

2. In usual, each cluster has only one consensus pat-
tern. Thus, many short and trivial patterns can be
avoided. Since one cluster has multiple sequences,
and one sequence only joins one cluster, the number
of patterns mined by ApproxMAP is small.

3. ApproxMAP does not adopt a unified support
threshold to prune patterns. Instead, it generates
a pattern from each cluster regardless of its size.
By doing so, ApproxMAP can find patterns strongly
followed by a small number of sequences in the
database. Such “rare” but “confident” patterns can
be of great value in practice.

In the next two sections, we will discuss how to
cluster sequences according to similarity and how to
align sequences and generate patterns from clusters of
sequences.

3 Clustering Sequences

In this section, we discuss how to cluster sequences in a
database. First, let us develop a distance measure.

In general, the hierarchical edit distance is com-
monly used as a distance measure for sequences. It
is defined as the minimum cost of editing operations
(i.e., insertions, deletions, and replacements) required
to change one sequence to the other. An insertion op-
eration on S1 to change it towards S2 is equivalent to
a deletion operation on S2 towards S1. Thus, an inser-
tion operation and a deletion operation have the same
cost. We use INDEL() to denote an insertion or dele-
tion operation, and REPL() to denote a replacement
operation. Often, the following inequality is assumed.

REPL(X,Y ) ≤ INDEL(X) + INDEL(Y )

Given two sequences S1 = 〈X1 · · ·Xn〉 and S2 =
〈Y1 · · ·Ym〉, the hierarchical edit distance between X
and Y can be computed by dynamic programming using
the following recurrence relation.

D(0, 0)=0
D(i, 0) =D(i− 1, 0) + INDEL(Xi) for (1 ≤ i ≤ n)
D(0, j)=D(0, j − 1) + INDEL(Yj) for (1 ≤ j ≤ m)

D(i, j) =min

{
D(i− 1, j) + INDEL(Xi)
D(i, j − 1) + INDEL(Yj)

D(i− 1, j − 1) +REPL(Xi, Yj)
for (1 ≤ i ≤ n) and (1 ≤ j ≤ m)

(3.1)

To make the edit distances comparable between se-
quences with various lengths, we normalize the results
by dividing the hierarchical edit distance by the length
of the longer sequence in the pair, and call it the nor-
malized edit distance. That is,

dist(S1, S2) =
D(n,m)

max{‖S1‖, ‖S2‖}
(3.2)

To make the hierarchical edit distance applicable
to sequences of sets, we need to define the cost of edit
operations (i.e., INDEL() and REPL() in Equation 3.1)
properly. Here, we adopt the normalized set difference
as the cost of replacement of sets.



REPL(X,Y ) = ‖(X−Y )∪(Y−X)‖
‖X‖+‖Y ‖

= ‖X‖+‖Y ‖−2‖X∩Y ‖
‖X‖+‖Y ‖

(3.3)

This measure has a nice property as follows.

0 ≤ REPL() ≤ 1

Moreover, it is a metric [5]. Following Equation 3.3, the
cost of an insertion/deletion is

INDEL(X) = REPL(X, ∅) = 1,

where X is an itemset. Table 1 shows some examples
on the calculation of normalized edit distances.

X Y REPL(X,Y ) X Y REPL(X,Y )

(a) (a) 0 (a) (b) 1

(a) (ab) 1
3

(ab) (cd) 1

(ab) (ac) 1
2

(a) () 1

Table 1: Normalized edit distances between some itemsets.

Clearly, the normalized set difference is equivalent
to the Sorensen coefficient.1 It is also an index similar
to the Jaccard coefficient2 [14], except that it gives more
weight to the common elements.

Using the hierarchical edit distance (Equation 3.2),
we can apply a density-based clustering algorithm to
cluster sequences. A density based clustering method
groups the data according to the valley of the density
function. The valleys can be considered as natural
boundaries that separate the modes of the distribution
[13, 7].

How can we define the density for a sequence?
Intuitively, a sequence is “dense” if there are many
sequences similar to it in the database. A sequence
is “sparse”, or “isolated”, if it is not similar to any
others, such as an outlier. Technically, the density
of a sequence can be measured by a quotient of the
number of similar sequences (nearest neighbors) against
the space occupied by such similar sequences.

In particular, for each sequence Si in a database
S, let d1, . . . , dk be the k smallest non-zero values of

1The Sorensen coefficient is defined as follows.
Ds(A,B) = 1− 2‖A∩B‖

‖A−B‖+‖B−A‖+2‖A∩B‖
=
‖A‖+‖B‖−2‖A∩B‖

‖A‖+‖B‖
= REPL(A,B)

2The Jaccard coefficient in dissimilarity notation is defined as
follows.

DJ (A,B) = 1− ‖A∩B‖‖A∪B‖
= 1− ‖A∩B‖

‖A−B‖+‖B−A‖+‖A∩B‖

dist(Si, Sj), where Sj 6= Si, is a sequence in S. Then,

Density(Si) = n
‖S‖d3

where d = max{d1, . . . , dk}
and n = ‖{Sj ∈ S|dist(Si, Sj) ≤ d}‖.

(3.4)

In Equation 3.4, n is the number of sequences in the
k-nearest neighbor space (including all ties). Here k is
a user-specified parameter.

We adopt an algorithm from [19] as follows.

Algorithm 3.1. (Uniform kernel k-NN clustering)

Input: a set of sequences S = {Si}, number of neighbor
sequences k;

Output: a set of clusters {Cj}, where each cluster is a
set of sequences;

Method:

1. Initialize every sequence as a cluster.
For each sequence Si in cluster CSi , set
Density(CSi) = Density(Si).

2. Merge nearest neighbors based on the
density of sequences.
For each sequence Si, let Si1 , . . . , Sin be the
nearest neighbor of Si, where n is defined in
Equation 3.4. For each Sj ∈ {Si1 , . . . , Sin},
merge cluster CSi containing Si with a clus-
ter CSj containing Sj , if Density(Si) <
Density(Sj) and there exists no S′j having
dist(Si, S′j) < dist(Si, Sj) and Density(Si) <
Density(S′j). Set the density of the new clus-
ter to max{Density(CSi), Density(CSj )}.

3. Merge based on the density of clusters.
For all sequences Si such that Si has no nearest
neighbor with density greater than that of
Si, but has some nearest neighbor, Sj , with
density equal to that of Si, merge the two
clusters CSj and CSi containing each sequence
if Density(CSj ) > Density(CSi). This step is
to merge “plateau neighbor regions”.

It is easy to show that the above algorithm has
complexity O(kNseq).

Intuitively, in Algorithm 3.1, two clusters are
merged if they are similar (in the sense of normalized
edit distance). Thus, sequences in a resulting cluster
are similar to each other.

The key parameter for the clustering process in
Algorithm 3.1 is k, the number of nearest neighbors
that the algorithm will search. A larger k value tends



to merge more sequences, and results in a smaller
number of large clusters, while a smaller k value tends
to break up clusters. The benefit of using a small
k value is that the algorithm can detect less frequent
patterns. The tradeoff is that it may break up clusters
representing strong patterns to generate multiple similar
patterns. As shown in our performance study, in many
applications, a value of k in the range from 3 to 10 works
well.

4 Multiple Alignment and Pattern Generation

Once sequences are clustered by similarity, sequences
within a cluster are similar to each other. Now, the
problem becomes how to summarize the general patterns
in clusters and discover the trend. In this section,
we develop a method using multiple alignment. First,
we discuss how to align sequences in a cluster, then
we explore how to summarize sequences and generate
patterns.

4.1 Multiple Alignment of Sequences
The global alignment of sequences is obtained by

inserting empty itemsets (i.e., ∅) into sequences such
that all the sequences have the same number of itemsets.
The empty itemsets can be inserted into the front or the
end of the sequences, or between any two consecutive
itemsets [11].

The edit distance between two sequences S1 and S2

can be calculated by comparing itemsets in the aligned
sequences one by one. If S1 and S2 have X and Y as
their ith aligned itemsets, respectively, where (X 6= ∅)
and (Y 6= ∅), then a REPL(X,Y ) operation is required.

Otherwise, (i.e., S1 and S2 have X and ∅ as
their ith aligned itemsets, respectively) an INDEL(X)
operation is needed. The optimal alignment is the one
in which the edit distance between the two sequences is
minimized. Clearly, the optimal alignment between two
sequences can be calculated by dynamic programming
using Recurrence Relation 3.1.

In general, for a cluster C with n sequences
S1, . . . , Sn, finding the optimal global alignment that
minimizes

n∑
j=1

n∑
i=1

dist(Si, Sj)

is an NP-hard problem [11], and thus is impractical for
mining large sequence databases with many sequences.
We need to look for some heuristics.

In a cluster, some sequences may be similar to many
other sequences in the cluster. In other words, such
sequences may have many close neighbors in terms of
similarity. These sequences are most likely to be closer
to the underlying patterns than the other sequences.

It is more likely to get an alignment close to the
optimal one, if we start the alignment with such “seed”
sequences.

Intuitively, the density defined in Equation 3.4
measures the similarity between a sequence and its
nearest neighbors. Thus, a sequence with a high density
means that it has some neighbors very similar to it,
and it is a good candidate for a “seed” sequence in
the alignment. Based on the above observation, in
ApproxMAP, we use the following heuristic to apply
multiple alignment to sequences in a cluster.

Heuristic 1. If sequences in a cluster C are aligned in
the density-descending order, the alignment result tends
to be good.

As the first step in the clustering (see Algorithm
3.1), the density for each sequence is calculated. We
only need to sort all sequences within a cluster in the
density descending order.

How can we store the alignment results effectively?
Ideally the result should be in a form such that we can
easily align the next sequence to the current alignment.
This will allow us to build a summary of the alignment
step by step until all sequences in the cluster have
been aligned. Furthermore, various parts of a general
pattern may be shared with different strengths, i.e.,
some items are shared by more sequences and some by
less sequences. The result should reflect the strengthes
of items in the pattern.

Here, we propose a notion of weighted sequence as
follows. A weighted sequence WS=〈X1 : v1, . . . , Xl :
vl〉 : n carries the following information:

1. the current alignment has n sequences, and n is
called the global weight of the weighted sequence;

2. in the current alignment, vi sequences have a non-
empty itemset Xi aligned in the ith itemset, where
(1 ≤ i ≤ l);

3. an itemset in the alignment is in the form of Xi =
(xj1 : wj1 , . . . , xjm : wjm), which means, in the
current alignment, there are wjk sequences that
have item xjk in the ith position of the alignment,
where (1 ≤ i ≤ l) and (1 ≤ k ≤ m).

The notations and the ideas are demonstrated in
the following example.

Example 1. (Multiple alignment) Suppose that,
in a cluster C, there are 5 sequences as shown in the
left two columns in Table 2. The density descending or-
der of these sequences is S3-S2-S4-S5-S1. The sequences
are aligned as follows.



Seq-id Sequence Alignment

S1 〈(ag)(f)(bc)(ae)(h)〉 〈(ag) (f) (bc) (ae) (h)〉
S2 〈(ae)(h)(b)(d)〉 〈(ae) (h) (b) (d) 〉
S3 〈(a)(b)(de)〉 〈(a) (b) (de) 〉
S4 〈(a)(bcg)(d)〉 〈(a) (bcg) (d) 〉
S5 〈(bci)(de)〉 〈 (bci) (de) 〉

Weighted sequence 〈(a : 4, e : 1, g : 1) : 4 (f : 1, h : 1) : 2 (b : 5, c : 3, g : 1, i : 1) : 5 (a : 1, d : 4, e : 3) : 5 (h : 1) : 1〉 : 5

Table 2: Sequences in a cluster and the complete alignment.

S3 〈(a) (b) (de)〉
S2 〈(ae) (h) (b) (d)〉
WS1〈(a : 2, e : 1) : 2(h : 1) : 1(b : 2) : 2(d : 2, e : 1) : 2〉: 2

Figure 1: S3 and S2 are aligned resulting in WS1.

First, sequences S3 and S2 are aligned as shown in
Figure 1.

Here, we use a weighted sequence WS1 to summarize
and compress the information about the alignment.
Since the first itemsets of S3 and S2, (a) and (ae), are
aligned, the first itemset in the weighted sequence WS1

is (a : 2, e : 1) : 2. It means that the two sequences
are aligned in this itemset, and a and e appear twice
and once, respectively. The second itemset in WS1,
(h : 1) : 1, means there is only one sequence with an
itemset aligned in this itemset, and item h appears once.

After the first step, we need to iteratively align
other sequences with the current weighted sequence.
The weighted sequence does not explicitly keep the
information about various itemsets in the sequences.
Instead, this information is summarized into the item
weights in the weighted sequence. These weights need
to be taken into account when aligning a sequence to a
weighted sequence.

Thus, instead of using Equation 3.3 directly to
calculate the distance between a weighted sequence and
a sequence in the cluster, we adopt a weighted replace
cost as follows.

Let X = (x1 : w1, . . . , xm : wm) : v be an itemset in
a weighted sequence, while Y = (y1 · · · yl) is an itemset
in a sequence in the database. Let n be the global weight
of the weighted sequence. The replace cost is defined as

REPL(X,Y ) = eR·v+n−v
n

where eR =
∑m

i=1
wi+‖Y ‖v−2

∑
xi∈Y

wi∑m

i=1
wi+‖Y ‖v

(4.5)

Accordingly, we have INDEL(X) = REPL(X, ∅) = 1
and INDEL(Y ) = REPL(Y, ∅) = 1.

The rationale of the Equation 4.5 is as follows.
After aligning a sequence, its alignment information is

incorporated into the weighted sequence. There are two
cases.

• A sequence may have a non-empty itemset aligned
in this itemset. Then, eR is the estimated average
replacement cost for all sequences that have a non-
empty itemset aligned in this itemset. There are in
total v such sequences.

• A sequence may have an empty itemset aligned in
this itemset. Then, we need an INDEL() operation
(whose cost is 1) to change the sequence to the one
currently being aligned. There are in total (n − v)
such sequences.

Equation 4.5 estimates the average of the cost in
the two cases.

Example 2. (Multiple alignment (con’d)) In the
next step, the weighted sequence WS1 and the third
sequence S4 are aligned as shown in Figure 2. Similarly,
we can align the remaining sequences. The results are
shown in Figure 3.

The alignment result for all sequences are summa-
rized in the weighted sequence WS4 shown in Figure 3.
After the alignment, we only need to store WS4. All
the sequences in the cluster are not needed any more in
the remainder of the mining.

Aligning the sequences in different order may result
in slightly different weighted sequences. To illustrate
the effect, Table 3 shows the alignment result using the
id order, S1-S2-S3-S4-S5.

Interestingly, the two alignment results are quite
similar, only some items shift positions slightly. This
causes the item weights to be reduced slightly. As veri-
fied by our extensive empirical evaluation, the alignment
order has little effect on the underlying patterns.

As shown in the above example, for a cluster of n
sequences, the complexity of the multiple alignment of
all sequences is O(n · t), where t is the maximal cost
of aligning two sequences. The result of the multiple
alignment is a weighted sequence. A weighted sequence
records the information of the alignment. Once a



WS1 〈(a : 2, e : 1) : 2 (h : 1) : 1 (b : 2) : 2 (d : 2, e : 1) : 2〉 : 2
S4 〈(a) (bcg) (d)〉
WS2 〈(a : 3, e : 1) : 3 (h : 1) : 1 (b : 3, c : 1, g : 1) : 3 (d : 3, e : 1) : 3〉 : 3

Figure 2: Sequences WS1 and S4 are aligned.

WS2 〈(a : 3, e : 1) : 3 (h : 1) : 1 (b : 3, c : 1, g : 1) : 3 (d : 3, e : 1) : 3〉 : 3
S5 〈 (bci) (de)〉
WS3 〈(a : 3, e : 1) : 3 (h : 1) : 1 (b : 4, c : 2, g : 1, i : 1) : 4 (d : 4, e : 2) : 4〉 : 4
S1 〈(ag) (f) (bc) (ae) (h)〉
WS4 〈(a : 4, e : 1, g : 1) : 4 (f : 1, h : 1) : 2 (b : 5, c : 3, g : 1, i : 1) : 5 (a : 1, d : 4, e : 3) : 5 (h : 1) : 1〉 : 5

Figure 3: The alignment of remaining sequences.

weighted sequence is derived, the sequences in the
cluster will not be visited anymore.

Now, the remaining problem is how to generate
patterns from weighted sequences.

4.2 Generation of Consensus Patterns
As shown in Section 4.1, a weighted sequence

records the statistics of the alignment of the sequences
in a cluster. Intuitively, a pattern can be generated by
picking up parts of a weighted sequence shared by most
sequences in the cluster.

For a weighted sequence WS = 〈(x11 : w11, . . . ,
x1m1 : w1m1) : v1, . . . , (xl1 : wl1, . . . , xlml : wlml) : vl〉 :
n, the strength of item xij : wij in the ith itemset is
defined as wij

n · 100%. Clearly, an item with a larger
strength value indicates that the item is shared by more
sequences in the cluster.

Motivated by the above observation, a user
can specify a strength threshold min strength (0 ≤
min strength ≤ 1). A consensus pattern P can be ex-
tracted from a weighted sequence by removing items in
the sequence whose strength values are lower than the
threshold.

Example 3. (Consensus pattern generation)

Suppose a user specifies a strength threshold
min strength = 30%. The consensus pattern ex-
tracted from weighted sequence WS4 is 〈(a)(bc)(de)〉.

Interestingly, if we compare the sequences in the
sequence database (Table 2) and the consensus pattern
mined from the database, the pattern is shared by
the sequences, but it is not exactly contained in any
one of them. In particular, every sequence except S2

approximately contains the pattern by one insertion.
These evidences strongly indicate that the consensus
pattern is the general template behind the data.

5 Empirical Evaluations

In this section, we report an extensive set of empirical
evaluations on ApproxMAP. We use both synthetic and

real data sets (Section 6) to test the method. All
experiments were run on a 4-processor Pentium III 700
MHz Linux machine with 2GB of main memory. Our
program only uses one CPU in all experiements.

5.1 Synthetic Data Generator
To gain insight on how ApproxMAP behaves under

various settings, we use the IBM synthetic data genera-
tor [2] to generate various synthetic data sets. The IBM
data generator takes several parameters and outputs a
sequence database as well as a set of base patterns. The
sequences in the database are generated in two steps.
First, base patterns are generated randomly according
to the user’s specification. Then, these base patterns
are corrupted (drop random items) and merged to gen-
erate the sequences in the database. Thus, these base
patterns are approximately shared by many sequences.
The base patterns are the underlying template behind
the database.

We summarize the parameters of the data generator
and the mining in Table 4.

5.2 Evaluation Criteria
Although many people have used this synthetic data

generator to generate benchmark data sets for sequen-
tial pattern mining, to the best of our knowledge, no
previous study examines whether the sequential pattern
mining can discover the base patterns properly. It is dif-
ficult for conventional sequential pattern mining meth-
ods to uncover the long base patterns. Furthermore,
the conventional methods usually generate much more
than just the base patterns. To test the effectiveness of
ApproxMAP, we examine whether ApproxMAP can find
the base patterns without generating many trivial or
irrelevant patterns.

Specifically, for a base pattern B and a consensus
pattern P , we denote B ⊗ P as the longest common
subsequence S of both B and P . Then, we define the
recoverability as follows to measure the quality of the



S-id Sequence Alignment

S1 〈(ag)(f)(bc)(ae)(h)〉 〈(ag) (f) (bc) (ae) (h)〉
S2 〈(ae)(h)(b)(d)〉 〈(ae) (h) (b) (d)〉
S3 〈(a)(b)(de)〉 〈(a) (b) (de)〉
S4 〈(a)(bcg)(d)〉 〈(a) (bcg) (d)〉
S5 〈(bci)(de)〉 〈 (bci) (de)〉

Weighted sequence 〈(a : 4, e : 1, g : 1) : 4(f : 1, h : 1) : 2(b : 5, c : 3, g : 1, i : 1) : 5(a : 1, e : 1) : 1(d : 4, e : 2, h : 1) : 5〉 : 5

Table 3: Aligning Sequences in another order.

Notation Meaning Default value

‖I‖ # of items 1000

Nseq # of data sequences 10000

Npat # of base pattern sequences 100

Lseq Avg. # of itemsets per data sequence 10

Lpat Avg. # of itemsets per base pattern 0.7 · Lseq
Iseq Avg. # of items per itemset in the database 2.5

Ipat Avg. # of items per itemset in base patterns 0.7 · Iseq
k # of neighbor sequences 5

min strength The strength threshold consensus patterns 50%

Table 4: Parameters and default values for the data generator and the mining.

mining.

R =
∑

base pat B

E(FB) ·min


1

maxcon pat P {‖B⊗P‖}
E(LB)

(5.6)

where E(FB) and E(LB) are expected frequency and
expected length of base pattern B. They are given by
the data generator. Since E(LB) is an expected value,
sometimes the actual observed value, max{‖B ⊗ P‖} is
greater than E(LB). In such cases, we cutoff the value of
max{‖B⊗P‖}

E(LB) to be 1 so that recoverability stays between
0 and 1.

Intuitively, if the recoverability of the mining is
high, major parts of the base patterns will be found.

5.3 Effectiveness of ApproxMAP
We ran many experiments with various synthetic

data sets. The trend is clear and consistent. Limited by
space, we report only the results on some selected data
sets here.

First, let us take a close look at the mining result
from a small data set with 1, 000 sequences. The
data generator uses 10 base patterns to generate the
data. ApproxMAP mines the data set using the following
parameters: the number of nearest neighbors k = 6
(for clustering), and strength threshold min strength =
30%. Under such settings, ApproxMAP also finds 10
consensus patterns. The patterns are shown in Table 5.

As shown, each of the 10 consensus patterns match
some base pattern. The consensus patterns do not cover
the last two base patterns. The recoverability is 92.46%.

In general, the consensus patterns recover major parts
of the base patterns. The consensus patterns cannot
recover the complete base patterns because, during
the data generation, only parts of base patterns are
embedded into a sequence. Hence, some items in the
base patterns may have much lower frequency than the
others. We also checked the worksheet of ApproxMAP.
The less frequent items in the base patterns are in the
weighted sequence. However, they are not included in
the consensus patterns because their item strengths are
weak.

It is interesting to note that a base pattern may be
recovered by multiple consensus patterns. For exam-
ple, ApproxMAP forms three clusters whose consensus
patterns approximate base pattern BasePat2. This is
because BasePat2 is long (the acutal length of the base
pattern is 22 items and the expected length of the pat-
tern in the data is 18 items) and has a high expected
frequency (16.1%). Therefore, many data sequences in
the database are generated using BasePat2 as a tem-
plate. As discussed above, sequences are generated by
removing various parts of the base pattern and inserting
noise items. Thus, two sequences using the same long
base pattern as the template are not necessarily similar
to each other. As a consequence, the sequences gener-
ated from a long base pattern can be partitioned into
multiple clusters by ApproxMAP.

In all the consensus patterns, there is only one item
(in the first itemset of ConPat2) that does not appear
on the corresponding position in the base pattern. This
fact indicates that the consensus patterns are highly



Exp freq Exp len Observed Type Patterns
pat. len

13 ConPat1 〈(15,16,17,66)(15)(58,99)(2,74)(31,76)(66)(62)〉
0.21 0.66 14 BasePat1 〈(15,16,17,66)(15)(58,99)(2,74)(31,76)(66)(62)(93)〉

11 ConPat2 〈(16,22)(29,99)(94)(45,67)(50)(96)(51)(66)〉
13 ConPat3 〈(22,50,66)(16)(29,99)(94)(45,67)(12,28,36)(50)〉
19 ConPat4 〈(22,50,66)(16)(29,99)(94)(45,67)(12,28,36)(50)(96)(51)(66)(2,22,58)〉

0.161 0.83 22 BasePat2 〈(22,50,66)(16)(29,99)(94)(45,67)(12,28,36)(50)(96)(51)(66)(2,22,58)(63,74,99)〉
11 ConPat5 〈(22)(22)(58)(2,16,24,63)(24,65,93)(6)〉

0.141 0.82 14 BasePat3 〈(22)(22)(58)(2,16,24,63)(24,65,93)(6)(11,15,74)〉
11 ConPat6 〈(31,76)(58,66)(16,22,30)(16)(50,62,66)〉

0.131 0.9 15 BasePat4 〈(31,76)(58,66)(16,22,30)(16)(50,62,66)(2,16,24,63)〉
13 ConPat7 〈(43)(2,28,73)(96)(95)(2,74)(5)(2)(24,63)(20)〉

0.123 0.81 14 BasePat5 〈(43)(2,28,73)(96)(95)(2,74)(5)(2)(24,63)(20)(93)〉
8 ConPat8 〈(63)(16)(2,22)(24)(22,50,66)〉

0.121 0.77 9 BasePat6 〈(63)(16)(2,22)(24)(22,50,66)(50)〉
11 ConPat9 〈(70)(58,66)(22)(74)(22,41)(2,74)(31,76)〉

0.0539 0.6 13 BasePat7 〈(70)(58,66)(22)(74)(22,41)(2,74)(31,76)(2,74)〉
15 ConPat10 〈(20,22,23,96)(50)(51,63)(58)(16)(2,22)(50)(23,26,36)〉

0.0135 0.91 17 BasePat8 〈(20,22,23,96)(50)(51,63)(58)(16)(2,22)(50)(23,26,36)(10,74)〉
0.0382 0.78 7 BasePat9 〈(88)(24,58,78)(22)(58)(96)〉
0.00809 0.66 17 BasePat10 〈(16)(2,23,74,88)(24,63)(20,96)(91)(40,62)(15)(40)(29,40,99)〉

Table 5: Consensus patterns and the base patterns in a small data set.

shared by sequences in the database.
Based on the above analysis, we can see that

ApproxMAP summarizes 1, 000 sequences in this small
data set into 10 consensus patterns accurately. The 10
consensus patterns resemble the base patterns that gen-
erates the sequences very well (recoverability=92.46%).
No trivial nor irrelevant pattern is generated.

5.4 Effects of Parameters And Scalability
Now, let us examine the effects of various param-

eters on the recoverability. The default configuration
of the data sets used in the remaining experiments is
given in Table 4. The expected frequencies of the 100
base patterns range from 7.63% to 0.005%. We test
the recoverability against 5 factors, namely the nearest
neighbor parameter k, the number of items in the data
set ‖I‖, the data set size in terms of number of sequences
Nseq, the average number of itemsets in a sequence Lseq,
and the average number of items per itemset Iseq.

First, we fix other settings and vary the value of k
from 2 to 10, where k is the nearest neighbor parameter
in the clustering. The results are shown in Figure 4. As
analyzed before, a larger value of k produces less number
of clusters, which leads to less number of patterns. As
expected, as k increases in Figure 4(a), the number of
consensus patterns decreases. This causes loss of some
weak base patterns and thus the recoverability decreases
slightly, as shown in Figure 4(b). In addition, like most

density based clustering algorithms, the recoverability is
sustained for a range of k (5 to 9) (Figure 4(b)). Figure
4(c) indicates that the performance of ApproxMAP is not
very sensitive to parameter k. It is stable.

Second, we studied the effect of the number of
items in the set I, ‖I‖. A smaller value of ‖I‖ results
in a denser database (i.e., patterns are with higher
frequencies) because the items come from a smaller
set of literals. In multiple alignment, the positions
of the items have strong effect on the results. Thus,
even when the density of the database changes, the
alignment statistics does not change substantially. We
observe that the performance of ApproxMAP in terms
of number of consensus patterns, recoverability and
runtime remains stable. Limited by space, we omit the
details here.

Third, we test the effect of data set size in terms
of number of sequences in the data set. The results
are shown in Figure 5. As the data set size increases,
the number of clusters also goes up. That increases the
number of consensus patterns, as shown in Figure 5(a).
However, it is interesting to note that the recoverability
also increases as the data set size goes up, as shown in
5(b). It can be explained as follows.

With multiple alignment, the more the sequences
in the data set, the easier the recovery of the base
patterns. In large data sets, there are more sequences
approximating the patterns. For example, if there are
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Figure 4: Effect of k, the nearest neighbor parameter.
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Figure 5: Effect of Nseq, the number of sequences in the data set.

only 1000 sequences, a base pattern that occurs in 1% of
the sequences will only have 10 sequences approximately
similar to it. However, if there are 100, 000 sequences,
then there would be 1, 000 sequences similar to the the
base pattern. It would be much easier for ApproxMAP to
detect the general trend from 1, 000 sequences than from
10 sequences. Moreover, we observe that ApproxMAP is
scalable w.r.t. data set size, as shown in Figure 5(c).

We observe similar effects from factors Lseq, the
average number of itemsets in a sequence, and Iseq, the
average number of items per itemset in the sequences.
Limited by space, we omit the details here.

The above analysis strongly indicates that
ApproxMAP is effective and scalable in mining large
databases with long sequences.

5.5 The Strength Threshold
In ApproxMAP, we use a strength threshold

min strength to filter out noise from weighted se-
quences. Here, we test the effect of the strength thresh-
old on the mining results.

In Figure 6, the percentage of noise items, the
percentage of consensus patterns having any noise item,
and the percentage of items in base patterns appearing
in consensus patterns w.r.t. the strength threshold is
plotted, respectively. As min strength is decreased
from 100%, both the percentage of noise items in Figure
6(a) and the number of patterns containing any noise

item in Figure 6(b) start to increase at min strength =
30% and increase drastically at 20%. This indicates
that items with strength ≥ 30% are probably items
in the base patterns. On the other hand, the average
percentage of items from the base pattern recovered
by the consensus pattern is reasonably stable when
min strength ≤ 50%, but goes down quickly when
min strength > 50%. This observation is also verified
by experiments on other data sets. Our experience with
data sets generated by the IBM data generator indicates
that 20%-50% is in fact a good range for min strength.

In all our experiments, the default value of
min strength is 50%.

5.6 Spurious Patterns
Spurious patterns are defined as consensus patterns

that are not similar to any base pattern. These are in
essence consensus patterns with almost all noise items.
Our experimental results show that ApproxMAP is able
to uncover the base patterns without generating many
spurious patterns, i.e., the number of consensus patterns
that are very different from all of the base patterns
is usually very small. Almost all consensus patterns
are very close to the base patterns. Only a very small
number of noise items appear in the consensus patterns.

5.7 The Orders in Multiple Alignment
Now, we studied the sensitivity of the multiple
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alignment results to the order of sequences in the
alignment. We compare the mining results using the
density-descending order, density-ascending order, and
the sequence-id ascending order. As expected, although
the exact alignment changes slightly depending on the
orders, it has very limited effect on the consensus pat-
terns. All three orders generated the exact same num-
ber of patterns, which were very similar to each other.
Therefore, the recoverability is basically identical.

This result shows that, while aligning patterns in
density descending order tends to improve the alignment
quality, ApproxMAP itself is robust w.r.t. alignment
orders.

6 Case Study: Mining The Welfare Services
Database

We also tested ApproxMAP on a real data set of welfare
services accumulated over a few years in North Carolina
State. The services have been recorded monthly for
children who had a substantiated report of abuse and
neglect, and were placed in foster care. There were 992
such sequences. In summary we found 15 interpretable
and useful patterns.

In total 419 sequences were grouped together into
one cluster which had the following consensus pattern.

〈(RPT )(INV, FC)

11︷ ︸︸ ︷
(FC) · · · (FC)〉

In the pattern, RPT stands for a report, INV stands for
an investigation, and FC stands for a foster care service.
The pattern indicates that many children who are in the
foster care system after getting a substantiated report
of abuse and neglect have very similar service patterns.
Within one month of the report, there is an investigation
and the child is put into foster care. Once children are in
the foster care system, they stay there for a long time.
This is consistent with the policy that all reports of
abuse and neglect must be investigated within 30 days.
It is also consistent with our analysis on the length of

stay in foster care.
Interestingly, when a conventional sequential algo-

rithm is applied to this data set, variations of this con-
sensus pattern overwhelm the results, because roughly
half of the sequences in this data set followed the typical
behavior approximately.

The rest of the sequences in this data set split into
clusters of various sizes. One cluster formed around
the few children (57 sequences) who have short spells in
foster care. The consensus pattern was

〈(RPT )(INV, FC)(FC)(FC)〉.

There were several consensus patterns from very
small clusters with about 1% of the sequences. One
such pattern of interest is shown in Figure 7.

There are 39 sequences in the cluster. Our clients
were interested in this pattern because foster care
services and home management services were expected
to be given as an ”either/or” service, but not together
to one child at the same time. Thus, this led us to
go back to the original data to see if indeed many
of the children received both services in the same
month. Our investigation found that this was true,
and lead our client to investigate this further in real
practice. Was this a systematic data entry error or was
there some components to Home Management Services
(originally designed for those staying at home with their
guardian) that were used in conjunction with Foster
Care Services on a regular basis? Which counties were
giving these services in this manner? Such an important
investigation would not have been triggered without our
analysis because no one ever suspected there was such a
pattern. It is difficult to achieve the same results using
the conventional sequential analysis methods because
when the support threshold is set to min support =
20%, there is more than 100, 000 sequential patterns
and the users just cannot identify the needle from the
straws.



〈(RPT )(INV, FC, T )(FC, T )

8︷ ︸︸ ︷
(FC,HM) · · · (FC,HM)(FC)(FC,HM)〉

Figure 7: An interesting pattern mined from a real data set, where T stands for transportation and HM stands
for Home Management Services.

7 Related Work

Basically, there are three categories of studies highly
related to our exploration in this paper, namely sequen-
tial pattern mining, multiple alignments and approxi-
mate frequent pattern mining. We survey them briefly
in the following subsections.

7.1 Sequential Pattern Mining
Since it was first introduced in [2], sequential pat-

tern mining has been studied extensively. Conventional
sequential pattern mining finds frequent subsequences
in the database based on exact match. There are two
classes of algorithms. On one hand, the breadth-first
search methods (e.g., GSP [21]) are based on the Apri-
ori principle [1] and conduct level-by-level candidate-
generation-and-tests. On the other hand, the depth-
first search methods (e.g., PrefixSpan [16] and SPAM
[3]) grow long patterns from short ones by constructing
projected databases. Some variations of the depth-first
search methods mine sequential patterns with vertical
format [25]. Instead of recording sequences of items ex-
plicitly, they record item-lists, i.e., each item has a list
of sequence-ids and positions where the item appears.

There are several interesting extensions to sequen-
tial pattern mining. For example, various constraints
have been explored to reduce the number of patterns
and make the sequential pattern mining more effective
[9, 21, 27, 17]. Moreover, some methods (e.g., [20]) mine
confident rules in the form of “A→ B”. Such rules can
be generated by a post-processing step after the sequen-
tial patterns are found.

Recently, Guralnik and Karypis used sequential
patterns as features to cluster sequential data [10]. They
project the sequences onto a feature vector comprised
of the sequential patterns, then uses a k-means like
clustering method on the vector to cluster the sequential
data. Interestingly, their work concurs with this study
that the similarity measure based on edit distance is a
valid measure in distance based clustering methods for
sequences. However, we use clustering to group similar
sequences here in order to detect approximate sequential
patterns. Their feature-based clustering method would
be inappropriate for this purpose because the features
are based on exact match.

7.2 Multiple Alignments
In parallel to the sequential pattern mining tech-

niques, another category of string/sequence analysis
techniques, multiple alignments, have been studied ex-
tensively in the last two decades in computational bi-
ology ([11], [8], [22]). In general, multiple alignment is
used to find common patterns in a group of strings.

In this paper, we generalized string multiple align-
ment to find patterns in ordered lists of sets. We se-
lect an appropriate measure for distance between se-
quences of itemsets. We also propose a new represen-
tation, weighted sequences, to maintain the alignment
information. Users can use the strength threshold to
control the level of detail included in the consensus pat-
terns.

7.3 Approximate Frequent Pattern Mining
Approximate frequent itemset mining is studied in

[18, 23]. Although the two methods are quite different in
techniques, they both explored approximate matching
among itemsets.

Recently, Yang et al. presents a probabilistic model
[24] to handle noise in mining strings. A compatibil-
ity matrix is introduced to represent the probabilistic
connection from observed items to the underlying true
items. Consequently, partial occurrence of an item is
allowed and a new measure, match, is used to replace
the commonly used support measure to represent the
accumulated amount of occurrences. However, it can-
not be easily generalized to apply to the sequential data
targeted in this paper, and it does not address the is-
sue of generating huge number of patterns that share
significant redundancy. By lining up similar sequences
and detecting the general trend, the multiple alignment
framework in this paper effectively finds consensus pat-
terns that are approximately similar to many sequences
and dramatically reduce the redundancy among the de-
rived patterns.

In [6], Chudova and Smyth used a Bayes error
rate framework under a Markov assumption to analyze
different factors that influence string pattern mining
in computational biology. Extending the theoretical
framework to mining sequences of sets could shed more
light to the future research direction.



As analyzed above, to the best of our knowledge,
though there are some related work, this is the first
study on mining consensus patterns from sequence
databases. It distinguishes itself from the previous
studies in the following two aspects.

• It proposes the theme of approximate sequential
pattern mining, which reduces number of patterns
substantially and provides much more accurate and
informative insights into sequential data.

• It generalizes the multiple alignment techniques to
handle sequences of itemsets. Mining sequences of
itemsets extends the application domain substan-
tially. The method is applicable to many interest-
ing problems, such as business analysis, security,
and complex bio-sequences analysis.

8 Conclusions

In this paper, we introduce ApproxMAP, a new ap-
proach to approximate sequential pattern mining. Its
goal is to organize and summarize sequence of sets to
uncover the underlying consensus patterns in the data.
ApproxMAP uses clustering as a preprocessing step to
group similar sequences, and then mines the underlying
consensus patterns in each cluster directly through mul-
tiple alignment. A novel structure, weighted sequences,
is proposed to summarize and compress the alignment
information. Our empirical evaluation on synthetic data
sets and real case study verify that ApproxMAP is capa-
ble of handling long sequential data and is robust to
noisy data. Our study illustrates that approximate pat-
tern mining does find general, useful, concise and un-
derstandable knowledge and thus is an interesting and
promising direction.
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