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Abstract  
We present extensions to research done at UNC in 3D object 
warping for collaborative virtual environments (CVEs).  3D 
objects are dynamically distorted in various ways to give visual 
cues to the users of a CVE about the actions that are being 
applied to the objects.  Some warps occur with single-user 
actions; others happen when several users interact with one 
object collaboratively.  We generalize the object warping 
methods to define 3D user interface techniques we generically 
call 3D sliders, meaning 3D objects that can be used to inject 
control information into programs.  Unlike sliders in 1D, where 
the graphical image presents an analog to a physical control, we 
generalized the notion in both dimensions and in format/style.  
We do 3D sliders by warping the original object shapes, 
allowing their forms to retain their original representational 
value as well.  The result is more than 3 degrees of control 
freedom in 3-space. 

 
1.  Introduction 
Collaborative virtual environments (CVEs) are multi-user 
distributed systems in which several users share a 3D virtual 
space. The interactions among users can cause conflicts, and it 
may be difficult to convey to the users involved exactly what the 
conflicts are.  For example, in a 3D environment where users 
can grasp and move objects, if two users grasp the same object 
simultaneously the system must decide what should happen 
visually to cue the users.  Should one user be given the object 
and the other denied?  Should both be denied and the object 
frozen until one lets go?  If the object is frozen in place, how 
will the users know that the system has not simply suffered a 
software failure?  This kind of information arises from subtle 
user interactions, so does not have to be communicated in a 
single user system.1 Consequently, techniques for conveying 
these subtle interface cues are largely absent from current UI 
technology. 

                                                                 
1 We should note that these problems arise whether or not the VE users 

have avatars (visible representations; in most current VEs, avatars are 
very simple, unarticulated forms, so a user may see in a gross way the 
presence of another user near an object, but may not see a moving or 
pinching hand to indicate grasping. 

We have been experimenting with one method for presenting 
this subtle information to the users of a CVE.  We have also 
gone beyond the CVE and are developing these warping 
methods as generic 3D UI technology, applicable in many 
different programming situations. 
In the remainder of this paper, we first present a summary of the 
various visual cues we have developed for 3D object warping, 
and a discussion of their use in the collaborative environment 
MUVEE (Multi-User Virtual Environment Editor).  We then 
present applications of these ideas in program control.  We 
conclude with a section of related work. 
 

 
Figure 1.  3D space rendered in MUVEE 

 

2.  Summary of Object Warping Visual Cues 
Our current approach to conveying subtle user interaction cues 
is to visibly animate the 3D objects in different ways as the users 
affect them.  The animation method we are currently studying is 
a 3D adaptation of real-time shape warping for drawing 
interfaces [1]. 
We have built a prototype system called MUVEE (Multi-User 
Virtual Environment Editor) to embody these warping 
operations for experimentation.  MUVEE is a multi-user 
distributed system that allows several different people to create 
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and modify 3D objects in a shared virtual space.  The objects are 
warped as users grasp, move, scale, and rotate them.  MUVEE 
was originally built with the Inventor graphics toolkit and has 
been moved to OpenGL; it is functionally quite simple.  Users 
are able to instantiate several basic shapes (sphere, cone, 
square), move them around in 3-space, scale and rotate objects, 
and delete objects.  The space is shared, meaning several users 
are able to do this concurrently.   Two users are able to 
simultaneously grasp an object, leading to the need for 
communicating information about conflicting interactions.  We 
approach this and other problems by warping the 3D objects in 
different ways. 
Figure 1 shows the MUVEE viewing screen, with 4 cubes 
displayed.  This is the view one user would have. Other users 
would have different views of the space, depending on eye point 
and direction of view. 
We next explain four direct manipulation operations for objects 
in MUVEE: translation, scaling, rotation, and pinning.  We 
also describe the tug of war effect, used to supply additional 
information for users interacting simultaneously with the same 
object. 
 

2.1  Translation 
Figure 2 shows a 3D direct manipulation move operation on a 
cube2. The figure shows the move operation with animation, 
where the one vertex of the cube stays attached to the mouse 
point while the bulk of the object lags slightly behind.  This 
animation gives the effect of manipulating a heavy ``rubbery'' 
object that distorts as it is pushed and pulled.  Although the 
effect does not correspond exactly to a physical model, this 
simple algorithm gives the impression that the shape is made of 
elastic material, with weights attached to the vertices, causing 
them to lag behind the movement. 

 
Figure 2.  Animating a move operation on 3D graphics object 

 

The grasped point, however, need not be a vertex, but in fact 
may be any point on the surface of the object.  

                                                                 
2 Many of the figures used in this paper for depicting the 3D animation 
effects have a wire frame drawing of the effect in their left diagram and 
a solid rendered drawing in their right diagram.  The two diagrams in 
the figures are identical graphical models; they have just been rendered 
with two different techniques. 

 

Objects can be either pulled or pushed (as in Figures 3 and 4); 
when mouse movement stops, the lagging portions of the 
moving object "catch up" with the grasped point and the object 
"snaps back" to its un-warped shape. 

 
Figure 3. Pushed in center 

 

 
Figure 4. Pulled out center 

 
2.2  Scaling and Rotating 
The animation effects described above for translation are also 
effective when used in conjunction with other common direct 
manipulation operations.  For example, Figure 6 illustrates a 3D 
operation to make an object smaller by scaling.   As in the 
translation example, during the animated version of the scale 
operation, the part of the object ``grasped'' is controlled by the 
user, while the bulk of the object lags behind.  An animation 
effect pulls out the un-grasped vertices of the cube (or, really, 
pulls in the sides while the vertices lag). A complementary 
animation effect is used in 3D scaling to make an object larger. 

 
Figure 5. Animating a 3D Rotate effect 
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Figure 5 shows a 3D operation to rotate an object about its 
center. Once again the animation effect is to have the object lag 
behind so as to give the illusion that the object has inertia. 

 
Figure 6. Animated Scale-down effect 

 

2.3  Pinning 
The pinning animation is used to supply simple visual 
constraining effects that can convey extra information for direct 
manipulation operations.  Consider an attempt to move an object 
that is fixed in place -- i.e. pinned.  One response to this attempt 
might simply be to prevent the object from following the mouse.  
However, this lack of visible feedback might be misinterpreted 
as the result of a failure to ``grasp'' the object correctly.  A user 
might make several attempts at the operation before realizing the 
true cause of the lack of response.   
Another strategy might be to allow the object to follow the 
mouse, but then to snap it back to its original place when 
released.  This approach avoids the problem with lack of 
feedback, but can lead to surprises when a carefully placed 
object suddenly jumps back to a previous position. 
A single frame of a 3D pinning animation effect is shown in 
Figure 7. This figure shows an animation effect that avoids both 
problems. As the user attempts to drag the pinned object, the 
grasped point stays attached to the mouse but the bulk of the 
object stays fixed. The effect is as if the user is pulling on a 
corner of an object that is anchored in place.  The feedback 

provides extra information: it makes it clear that the user is 
attempting to move the object, but that the attempt is not 
succeeding.  When the grasped point is released, the object 
springs back to its original shape. 

 
Figure 7. Extreme 3D Pin effect 

 

2.4  Tug of War 
Collaborative systems are required to provide visual cues when 
multiple users are simultaneously manipulating a particular data 
object.  The tug-of-war effect shown in Figure 8 depicts a form 
of visual feedback when two users are attempting to move an 
object simultaneously.  A user first grasps an object. Once a 
second user grasps the same object it stops moving. While the 
two users attempt to move the object, the grasped corners of the 
object are stretched out demonstrating that neither user has full 
control of the object. 
 

 
Figure 8. Two users� Tug of war effect 

 
We have a snap-copy mode in MUVEE that can come into play 
in tug-of-war.  If one of the users is persistent and warps the 
object extremely it will "snap in two", essentially causing an 
object copy.  The motion that causes this split can be a fast, 
snapping mouse motion, or a long stretch past a virtual 
"breaking point."  Our system allows this feature to be turned on 
or off, according to the needs of the modeling situation.  It can 
be a bit annoying to have object copies pop up in situations were 
copies make no sense. 
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3.  3D Sliders for System Visualization 
In this section we present the concepts and design of an 
experimental system for dynamically reconfiguring distributed 
systems using 3D virtual environments and warping 3D sliders. 
The work merges our previous research in collaborative VEs 
with previous work in language-based tools for automated 
generation and reconfiguration of distributed systems (Polylith 
[3]). 
There are several ways in which MUVEE can be used in the 
general context of configuring and reconfiguring distributed 
systems. First, it can provide a unique and especially rich 
visualization for a system's current configuration and 
performance characteristics. A 3D world for MUVEE is 
generated along with the system, and execution measurements 
made constantly so MUVEE reflects the system's performance in 
the visual appearance of the VE. Objects change their shape, 
color, size, relative spacing, etc. to indicate changes in the 
absolute and relative relationships among the processes. 
Secondly, it provides a means for a user to feed control 
information back into an executing system.  The performance of 
a system can be "tweaked" by generated it with internal 
instrumentation, or hooks, that communicate with MUVEE.  A 
user manually and directly manipulates objects in the MUVEE 
world and has related execution characteristics of the processes 
change as a result of the object warps. 
Finally, it provides a means of dynamically restructuring the 
configuration of the processes and hosts in a distributed system. 
Users directly manipulate objects in the MUVEE world and 
have the supporting Polylith toolbus alter the number, 
interconnections, and host placements of the processes 
comprising the system.  This restructuring is termed �dynamic 
reconfiguration.� 
 

3.1 Configuration visualization via warping 
MUVEE can be used to present a snapshot to a user of the 
configuration and performance of executing software. When a 
distributed system is generated from our modified Polylith 
system, we create a MUVEE world (CVE) representing several 
physical aspects of the system configuration. The objects in the 
VE have different shapes and colors to indicate different process 
properties, and they are arranged spatially to show the network 
connections set up among the processes. 
There are numerous ways to map warp operations onto 
system/program properties, enabling visualization and control 
feedback.  One source of system loading, for example, is a 
shortage of resources on the host platform for a process.  A 
shortage of CPU cycles, memory, or disk space could all be 
possible sources of performance degradation.  The users on the 
other systems in a distributed configuration do not care why 
there is a slowdown, but only that there is a slowdown.  A 
warping visual effect via scaling or rotation can be employed to 
highlight this fact.  The previous Figure 5 and Figure 6 show 
examples of how an object representing a system component can 
be visualized as they move off ideal values for their resource 
needs.  In each case, the inertia and the �rubbery� appearance of 
the object convey to the viewers the impression that the process 
in under some strain, and continued warping (slowly perhaps) as 

execution progresses shows if the strain is increasing or 
decreasing. 
As the process network executes, as traffic patterns change, as 
the processes become "loaded", performance will change. As a 
process is loaded to the point where it is "falling behind" its 
collaborators, MUVEE starts to warp its corresponding object in 
the shared VE space.  The more warped an object becomes, the 
more extreme is its execution status with respect to "normal." 
This loading might come from a slow host being unable to flush 
a message buffer as fast as the senders fill it, for example. 
The 3D interactive VE gives users a quick, holistic picture of the 
entire system.  A nicely behaving system will look mostly un-
warped. Temporary performance variability will be expressed by 
minor warping that appears and disappears over time.  When a 
system develops more serious trouble the warping will become 
more pronounced, more long-lived, perhaps even more 
widespread, affecting more objects as trouble in some processes 
begin to create chain-reaction problems in other processes. 
This approach assumes we are specifying initial configurations 
in some MIL notation and that the MUVEE world is generated 
along with the system.  Another way to exploit MUVEE-based 
visualization is to generate initial configurations from a 
manually constructed virtual world.  MUVEE can be used to 
layout the components of a distributed system and the 
relationships among the components; then the appropriate MIL 
specs can be generated from the virtual world.  We are exploring 
both approaches. 
 

3.3  System control feedback 
We use our same warping techniques to inject configuration and 
performance control information back into a system.  Rather 
than simply viewing the objects in the MUVEE world, we allow 
the user to manipulate them as well.  Consider an object in the 
MUVEE world that is warped; the warped shape will be 
pointing in the direction of the process that is generating the 
traffic.  One object may even be warped in several directions 
(like in the tug-of-war operation above), indicating that it is 
receiving surplus traffic from several different processes.  Let's 
call the warped object (representing the slow process) S, and 
call the traffic-generating object T. 
The user can grasp the T object and drag it back towards the S 
object. This will visually warp T somewhat, and it will also send 
a message to the T process to slow down.  The resulting drop in 
traffic to the S process will cause the S object to lose some warp 
as it catches up.  The more the user warps T, the more it will 
slow down.  Releasing the T object will cause the T process to 
resume normal performance. 
One observes this interesting visual phenomenon: In a certain 
configuration, the performance of a system of processes causes a 
rather distorted overall picture, with several warped objects.  By 
further warping some of the normal objects manually, the 
warped ones will "settle down" and return to a less stressed 
form. 
Different warping operations are used for different performance 
adjustments to the processes. We have already indicated that the 
pinned warp is used to selectively cut the message transmission 
rate to one specific process (the one in the direction of the 
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warp).  The scaling is more general; it will speed up or slow 
down a process uniformly (i.e., cut the message transmission 
rate to all other processes).  
 

An Illustration 
Figures 9 and 10 show an example of this sort of performance 
visualization and control feedback.  Remember that MUVEE is 
used to build collaborative VEs. In this example, the 
�collaboration� is between the controller (a human user) and the 
system under control.  Each agent performs warping operations 
on the 3D representations of system components. 

Qbc 

Qba 

Qca 

A 

B C 

X 

 
Figure 9.  Back warp applied to object C 

Qbc 

Qba 

Qca 

A 

B C 

X 

 
Figure 10.  Back warp shortens Qbc and Qba 

 
In Figure 9, a system of 3 processes is represented.  B is sending 
messages to C and A; C is sending messages to A.  We represent 
queue lengths with pinned warps from the nearest corners, so 
the warping from C towards A represents a lengthening message 
queue.  This suggests that A cannot keep up with processing the 
traffic C is sending; A�s load is further indicated by the length of 
the queue from B to A.  We represent the amount of idle 
processor by the scaling warp.  Here we see A scaling down, 
indicating increasing time gone by without idle processor time.   

The system controller decides to try to balance the system by 
slowing down the rate at which C sends messages to A for 
processing.  This is done my back warping C at point X, 
accomplished by grasping the C object and pulling back the 
warped corner.  Figure 10 shows the effects of the back warp.  
Since C slows down, A has more time to process messages from 
B, and the queue from B to A shortens.  The queue from C to A 
shortens (by direct controller intervention).  Process A has more 
idle processor time as well, causing the scaling warp to relax and 
returning A�s representation back to its normal shape. 

 
3.4  Dynamic reconfiguration 
``Dynamic reconfiguration'' refers to one's implementing 
changes to a running application.  Demand for reliable ways to 
reconfigure is increasing, as the community seeks to perform 
maintenance on highly available applications; to tune network 
applications for best performance; and of course the ubiquity of 
the Internet means we will increasingly need to interconnect 
sophisticated resources on the fly in order to solve problems. 
We now have mechanisms that allow us to reliably change a 
program in ways unanticipated by the original programmer, but 
as yet these techniques are not yet fully exploited in the 
community. The Polylith toolbus allows dynamic 
reconfiguration, stopping, re-hosting, and re-starting processes 
according to execution parameters and performance constraints. 
One barrier to effective reconfiguration has been the difficulty of 
users being able to adequately see a system's dynamic state.  
Users cannot apply unprecedented changes to their running 
application if they are unable to grasp the configuration's current 
state to know what they're starting with.  Similarly, the many 
types of constraints that affect reconfiguration are typically 
encoded in a rule base that the user must be familiar with ahead 
of time.   
With MUVEE world, and 3D sliders, users can directly interact 
with the configuration and state of their running applications.  
Using virtual haptic responses (the visual warping can actually 
cause users to sense feedback in their hands), users can gain 
direct feedback on the suitability of various reconfiguration 
options.  Instead of having to remember constraints and state in 
one's head, a user can explore options and effect dynamic 
reconfigurations directly. 
There are many constraints among the processes and 
communication paths in a distributed system that can be 
visualized in this way. Providing visible cues (via object 
warping) to a user trying to relocate a process, or reallocate 
resources among processes, can be an effective indicator of the 
difficulty of doing what is requested; it could also be used to 
indicate the relative costs of alternative solutions a user 
develops for a configuration problem. 
These previously described snap-copy warps are appropriate as 
a manual way to signal system reconfigurations of different 
kinds.  Pulling an object into two could be a signal for process 
replication.  Manual movement of the new object copy could be 
used to designate the new host. A host that is already overloaded 
can signal the inappropriateness of a suggested migration by 
"pushing back" on the object, visually warping it as the user 
moved it close. 
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4.  Federations of Environmental Models 
Another area in which we are applying 3D sliders is in creation 
and execution of federations of environmental models. Scientists 
who study the environment create mathematical models of 
portions of it, and solve these models to get information that will 
help with weather forecasting, resource allocation and use, 
urban/rural planning, and other functions important to society.  
Currently, environmental science is highly stratified. There are 
atmosphere modelers, soil modelers, hydrologists, groundwater 
modelers, marine biologists, and numerous other sub-disciplines 
under the abstract umbrella of �the environment.� Models in 
each area often need data from other models in other areas; for 
example, to get proper results about surface water runoff for a 
particular region, you need rainfall data that comes from an 
atmosphere model. Environmental models do not interoperate 
well; if they do at all, it is with considerable manual 
programming effort to "knit" them together.  

With support from the EPA we are developing a software 
framework [4] for allowing environmental modelers to more 
easily interconnect several models of different portions of the 
environment to make a hybrid, federated model.  The federated 
model will give results no individual model component can. In 
EPA terms, this is "multi-media modeling," where media are 
soil, air, water, sediment, rock, etc.  This is part of a larger EPA 
effort called MIMS [5]. 

Our current system consists of an interconnection layer and 
runtime controller written in Haskell; a metadata specification 
component in XML; and component environmental models for 
system testing, including river sediment models, watershed 
models of the Neuse river basin, hydrology models for the 
Neuse, and urban storm water runoff models. 

We are currently constructing an interface that will allow 
environmental scientists to construct federated models without 
having to be Haskell or XML programmers.  One component of 
this interface is based on MUVEE and 3D sliders.  We represent 
each model that can participate in a federation as a shape in a 
3D collaborative environment � ovoid for atmosphere, cube for 
hydrological and water models, rectangle for land use and 
terrestrial models, etc. 

Information about each model component (its name, source 
language, source code, parameters required, information 
produced, documentation) is available hypertextually by 
clicking on its representation.  When a user tries to attach two 
components together, their affinity for each other (are the source 
languages compatible, are the input/output streams compatible, 
are the modeling domains compatible) is shown by the input and 
output ports warping towards each other when they are in 
proximity.  Full compatibility will cause touching.  If 
incompatible input and output streams are to be joined, the user 
must manually warp one object towards another; this causes the 
system to invoke a template for creation of a Haskell data filter 
function; the user can select an appropriate one from a palate of 
existing filters, or can write a new one for the occasion and add 
it to the palate. 

The snap-copy warp is useful in this context.  If a user grasps an 
object and moves it with a �snap�, meaning very rapid short 
mouse motion, then it initially stretches, but then �breaks� into a 
copy of the original object.  This is useful in modeling because, 
for example, a river flow model that covers hundreds of miles 
may have to be connected to dozens of sediment model 
processes, one for each few thousand yards of river length.  
Setting this up can be tedious without good interaction features. 

Once the federated model is composed, the MUVEE system 
allows control of its execution as mentioned in the previous 
section.  Execution visualization causes warping of system 
components according to the information a user has requested to 
monitor.  These degrees of freedom include queue lengths (or 
amount of remaining input to be consumed), iteration count 
(environmental models are solved iteratively), process idle time, 
and process status. 
 

5.  Design pattern matching 
While we have not begun to implement a 3D slider application 
for this idea, we are currently doing research in design pattern 
detection for software architectures [6].  In this project we are 
developing elemental design patterns � object structures that are 
fundamental to the manner in which computation is done in OO 
languages, and from which the larger design patterns of GOF [7] 
can be composed, as well as other patterns from the software 
engineering literature.  The elemental patterns are expressed in 
an extension to sigma-calculus, and we are developing tools that 
use this formalism to make inferences about program structure 
to find the patterns used in their architecture.   
 
The output of the pattern-finding tools in not expressed as 
certainty.  Rather, they report percentage estimated of how close 
various program structures are to matching design patterns.  We 
think this is a good application for 3D sliders.  A MUVEE 
representation of the system architecture, in terms of patterns, 
can be built, with the pattern shapes warped in different ways to 
represent 

• how far off the ideal is the code itself 
• what aspects of the code are failing to match the 

pattern ideals 
 
This is still early work and we will not have this MUVEE 
application for experimentation for another 6 months we expect. 
 
 6.  Related Work 
Projects directly related to our work are scare, in that we have 
combined Virtual Environment graphics with distributed system 
toolkits to create collaborative VEs.  Some work has been done 
on visualization of process networks, but our 3D VE approach is 
unique as far as we can determine. 
In addition to Polylith [3], on which we have built MUVEE, 
there are numerous other projects that have investigated 
specification languages and support systems for constructing 
distributed networks of processes [8,9,10,11,12,13].  Several 
projects have explored distributed (and collaborative) virtual 
environments in general [14,15,16,17,18,19], but none have 
applied VE modeling to and manipulation to the configuration 
of distributed systems themselves.  These projects are mostly 
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stand-alone systems that have explored basic DVE concepts of 
object model interchange, networking performance, and 
underlying application-level protocols. 
In the area of user interfaces, use of graphical objects as 
program control is limited mainly to 1D (sliders, wheels, 
buttons, etc.) and 2D (2D sliders, joysticks, touch screens, etc.).  
Our work on 3D sliders seems novel in this respect. 
The warping work on which we build was first developed jointly 
with B. Thomas [20] in a project that extended his earlier work 
on animations in 2D user interfaces for drawing tools [1,21].  
That work has been further extended into collaborative windows 
application in general [22]. 
The use of 3D in user interfaces is well established, especially to 
visualize data structures.  Cone trees use 3D cones to show trees 
in a form that can be manipulated for different viewpoints [23].  
Fisheye views [24] distort, or enlarge, areas of a complex object 
so that regions of focus or interest are enlarged, and other 
regions de-emphasized; this has been applied in many areas, 
including groupware [25] and the Web/hypermedia [26,2].  
Haptic feedback is a well-established technique in VE use for 
physical processes [27,28]; warping as we present it here 
provides some similar feedback but without the need for force-
generating devices.   
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