
 1

Technical Report TR02-030

Department of Computer Science
Univ of North Carolina at Chapel Hill

3D Sliders: Programming Uses for 3D Object Warping
in Collaborative Virtual Environments

David Stotts

Dept of Computer Science
Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

June 1, 2002

 2

3D Sliders: Programming Uses for 3D Object Warping
in Collaborative Virtual Environments

David Stotts

Dept. of Computer Science
Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175 USA
1-919-962-1833

stotts@cs.unc.edu

Abstract
We present extensions to research done at UNC in 3D object
warping for collaborative virtual environments (CVEs). 3D
objects are dynamically distorted in various ways to give visual
cues to the users of a CVE about the actions that are being
applied to the objects. Some warps occur with single-user
actions; others happen when several users interact with one
object collaboratively. We generalize the object warping
methods to define 3D user interface techniques we generically
call 3D sliders, meaning 3D objects that can be used to inject
control information into programs. Unlike sliders in 1D, where
the graphical image presents an analog to a physical control, we
generalized the notion in both dimensions and in format/style.
We do 3D sliders by warping the original object shapes,
allowing their forms to retain their original representational
value as well. The result is more than 3 degrees of control
freedom in 3-space.

1. Introduction
Collaborative virtual environments (CVEs) are multi-user
distributed systems in which several users share a 3D virtual
space. The interactions among users can cause conflicts, and it
may be difficult to convey to the users involved exactly what the
conflicts are. For example, in a 3D environment where users
can grasp and move objects, if two users grasp the same object
simultaneously the system must decide what should happen
visually to cue the users. Should one user be given the object
and the other denied? Should both be denied and the object
frozen until one lets go? If the object is frozen in place, how
will the users know that the system has not simply suffered a
software failure? This kind of information arises from subtle
user interactions, so does not have to be communicated in a
single user system.1 Consequently, techniques for conveying
these subtle interface cues are largely absent from current UI
technology.

1 We should note that these problems arise whether or not the VE users

have avatars (visible representations; in most current VEs, avatars are
very simple, unarticulated forms, so a user may see in a gross way the
presence of another user near an object, but may not see a moving or
pinching hand to indicate grasping.

We have been experimenting with one method for presenting
this subtle information to the users of a CVE. We have also
gone beyond the CVE and are developing these warping
methods as generic 3D UI technology, applicable in many
different programming situations.
In the remainder of this paper, we first present a summary of the
various visual cues we have developed for 3D object warping,
and a discussion of their use in the collaborative environment
MUVEE (Multi-User Virtual Environment Editor). We then
present applications of these ideas in program control. We
conclude with a section of related work.

Figure 1. 3D space rendered in MUVEE

2. Summary of Object Warping Visual Cues
Our current approach to conveying subtle user interaction cues
is to visibly animate the 3D objects in different ways as the users
affect them. The animation method we are currently studying is
a 3D adaptation of real-time shape warping for drawing
interfaces [1].
We have built a prototype system called MUVEE (Multi-User
Virtual Environment Editor) to embody these warping
operations for experimentation. MUVEE is a multi-user
distributed system that allows several different people to create

 3

and modify 3D objects in a shared virtual space. The objects are
warped as users grasp, move, scale, and rotate them. MUVEE
was originally built with the Inventor graphics toolkit and has
been moved to OpenGL; it is functionally quite simple. Users
are able to instantiate several basic shapes (sphere, cone,
square), move them around in 3-space, scale and rotate objects,
and delete objects. The space is shared, meaning several users
are able to do this concurrently. Two users are able to
simultaneously grasp an object, leading to the need for
communicating information about conflicting interactions. We
approach this and other problems by warping the 3D objects in
different ways.
Figure 1 shows the MUVEE viewing screen, with 4 cubes
displayed. This is the view one user would have. Other users
would have different views of the space, depending on eye point
and direction of view.
We next explain four direct manipulation operations for objects
in MUVEE: translation, scaling, rotation, and pinning. We
also describe the tug of war effect, used to supply additional
information for users interacting simultaneously with the same
object.

2.1 Translation
Figure 2 shows a 3D direct manipulation move operation on a
cube2. The figure shows the move operation with animation,
where the one vertex of the cube stays attached to the mouse
point while the bulk of the object lags slightly behind. This
animation gives the effect of manipulating a heavy ``rubbery''
object that distorts as it is pushed and pulled. Although the
effect does not correspond exactly to a physical model, this
simple algorithm gives the impression that the shape is made of
elastic material, with weights attached to the vertices, causing
them to lag behind the movement.

Figure 2. Animating a move operation on 3D graphics object

The grasped point, however, need not be a vertex, but in fact
may be any point on the surface of the object.

2 Many of the figures used in this paper for depicting the 3D animation
effects have a wire frame drawing of the effect in their left diagram and
a solid rendered drawing in their right diagram. The two diagrams in
the figures are identical graphical models; they have just been rendered
with two different techniques.

Objects can be either pulled or pushed (as in Figures 3 and 4);
when mouse movement stops, the lagging portions of the
moving object "catch up" with the grasped point and the object
"snaps back" to its un-warped shape.

Figure 3. Pushed in center

Figure 4. Pulled out center

2.2 Scaling and Rotating
The animation effects described above for translation are also
effective when used in conjunction with other common direct
manipulation operations. For example, Figure 6 illustrates a 3D
operation to make an object smaller by scaling. As in the
translation example, during the animated version of the scale
operation, the part of the object ``grasped'' is controlled by the
user, while the bulk of the object lags behind. An animation
effect pulls out the un-grasped vertices of the cube (or, really,
pulls in the sides while the vertices lag). A complementary
animation effect is used in 3D scaling to make an object larger.

Figure 5. Animating a 3D Rotate effect

 4

Figure 5 shows a 3D operation to rotate an object about its
center. Once again the animation effect is to have the object lag
behind so as to give the illusion that the object has inertia.

Figure 6. Animated Scale-down effect

2.3 Pinning
The pinning animation is used to supply simple visual
constraining effects that can convey extra information for direct
manipulation operations. Consider an attempt to move an object
that is fixed in place -- i.e. pinned. One response to this attempt
might simply be to prevent the object from following the mouse.
However, this lack of visible feedback might be misinterpreted
as the result of a failure to ``grasp'' the object correctly. A user
might make several attempts at the operation before realizing the
true cause of the lack of response.
Another strategy might be to allow the object to follow the
mouse, but then to snap it back to its original place when
released. This approach avoids the problem with lack of
feedback, but can lead to surprises when a carefully placed
object suddenly jumps back to a previous position.
A single frame of a 3D pinning animation effect is shown in
Figure 7. This figure shows an animation effect that avoids both
problems. As the user attempts to drag the pinned object, the
grasped point stays attached to the mouse but the bulk of the
object stays fixed. The effect is as if the user is pulling on a
corner of an object that is anchored in place. The feedback

provides extra information: it makes it clear that the user is
attempting to move the object, but that the attempt is not
succeeding. When the grasped point is released, the object
springs back to its original shape.

Figure 7. Extreme 3D Pin effect

2.4 Tug of War
Collaborative systems are required to provide visual cues when
multiple users are simultaneously manipulating a particular data
object. The tug-of-war effect shown in Figure 8 depicts a form
of visual feedback when two users are attempting to move an
object simultaneously. A user first grasps an object. Once a
second user grasps the same object it stops moving. While the
two users attempt to move the object, the grasped corners of the
object are stretched out demonstrating that neither user has full
control of the object.

Figure 8. Two users� Tug of war effect

We have a snap-copy mode in MUVEE that can come into play
in tug-of-war. If one of the users is persistent and warps the
object extremely it will "snap in two", essentially causing an
object copy. The motion that causes this split can be a fast,
snapping mouse motion, or a long stretch past a virtual
"breaking point." Our system allows this feature to be turned on
or off, according to the needs of the modeling situation. It can
be a bit annoying to have object copies pop up in situations were
copies make no sense.

 5

3. 3D Sliders for System Visualization
In this section we present the concepts and design of an
experimental system for dynamically reconfiguring distributed
systems using 3D virtual environments and warping 3D sliders.
The work merges our previous research in collaborative VEs
with previous work in language-based tools for automated
generation and reconfiguration of distributed systems (Polylith
[3]).
There are several ways in which MUVEE can be used in the
general context of configuring and reconfiguring distributed
systems. First, it can provide a unique and especially rich
visualization for a system's current configuration and
performance characteristics. A 3D world for MUVEE is
generated along with the system, and execution measurements
made constantly so MUVEE reflects the system's performance in
the visual appearance of the VE. Objects change their shape,
color, size, relative spacing, etc. to indicate changes in the
absolute and relative relationships among the processes.
Secondly, it provides a means for a user to feed control
information back into an executing system. The performance of
a system can be "tweaked" by generated it with internal
instrumentation, or hooks, that communicate with MUVEE. A
user manually and directly manipulates objects in the MUVEE
world and has related execution characteristics of the processes
change as a result of the object warps.
Finally, it provides a means of dynamically restructuring the
configuration of the processes and hosts in a distributed system.
Users directly manipulate objects in the MUVEE world and
have the supporting Polylith toolbus alter the number,
interconnections, and host placements of the processes
comprising the system. This restructuring is termed �dynamic
reconfiguration.�

3.1 Configuration visualization via warping
MUVEE can be used to present a snapshot to a user of the
configuration and performance of executing software. When a
distributed system is generated from our modified Polylith
system, we create a MUVEE world (CVE) representing several
physical aspects of the system configuration. The objects in the
VE have different shapes and colors to indicate different process
properties, and they are arranged spatially to show the network
connections set up among the processes.
There are numerous ways to map warp operations onto
system/program properties, enabling visualization and control
feedback. One source of system loading, for example, is a
shortage of resources on the host platform for a process. A
shortage of CPU cycles, memory, or disk space could all be
possible sources of performance degradation. The users on the
other systems in a distributed configuration do not care why
there is a slowdown, but only that there is a slowdown. A
warping visual effect via scaling or rotation can be employed to
highlight this fact. The previous Figure 5 and Figure 6 show
examples of how an object representing a system component can
be visualized as they move off ideal values for their resource
needs. In each case, the inertia and the �rubbery� appearance of
the object convey to the viewers the impression that the process
in under some strain, and continued warping (slowly perhaps) as

execution progresses shows if the strain is increasing or
decreasing.
As the process network executes, as traffic patterns change, as
the processes become "loaded", performance will change. As a
process is loaded to the point where it is "falling behind" its
collaborators, MUVEE starts to warp its corresponding object in
the shared VE space. The more warped an object becomes, the
more extreme is its execution status with respect to "normal."
This loading might come from a slow host being unable to flush
a message buffer as fast as the senders fill it, for example.
The 3D interactive VE gives users a quick, holistic picture of the
entire system. A nicely behaving system will look mostly un-
warped. Temporary performance variability will be expressed by
minor warping that appears and disappears over time. When a
system develops more serious trouble the warping will become
more pronounced, more long-lived, perhaps even more
widespread, affecting more objects as trouble in some processes
begin to create chain-reaction problems in other processes.
This approach assumes we are specifying initial configurations
in some MIL notation and that the MUVEE world is generated
along with the system. Another way to exploit MUVEE-based
visualization is to generate initial configurations from a
manually constructed virtual world. MUVEE can be used to
layout the components of a distributed system and the
relationships among the components; then the appropriate MIL
specs can be generated from the virtual world. We are exploring
both approaches.

3.3 System control feedback
We use our same warping techniques to inject configuration and
performance control information back into a system. Rather
than simply viewing the objects in the MUVEE world, we allow
the user to manipulate them as well. Consider an object in the
MUVEE world that is warped; the warped shape will be
pointing in the direction of the process that is generating the
traffic. One object may even be warped in several directions
(like in the tug-of-war operation above), indicating that it is
receiving surplus traffic from several different processes. Let's
call the warped object (representing the slow process) S, and
call the traffic-generating object T.
The user can grasp the T object and drag it back towards the S
object. This will visually warp T somewhat, and it will also send
a message to the T process to slow down. The resulting drop in
traffic to the S process will cause the S object to lose some warp
as it catches up. The more the user warps T, the more it will
slow down. Releasing the T object will cause the T process to
resume normal performance.
One observes this interesting visual phenomenon: In a certain
configuration, the performance of a system of processes causes a
rather distorted overall picture, with several warped objects. By
further warping some of the normal objects manually, the
warped ones will "settle down" and return to a less stressed
form.
Different warping operations are used for different performance
adjustments to the processes. We have already indicated that the
pinned warp is used to selectively cut the message transmission
rate to one specific process (the one in the direction of the

 6

warp). The scaling is more general; it will speed up or slow
down a process uniformly (i.e., cut the message transmission
rate to all other processes).

An Illustration
Figures 9 and 10 show an example of this sort of performance
visualization and control feedback. Remember that MUVEE is
used to build collaborative VEs. In this example, the
�collaboration� is between the controller (a human user) and the
system under control. Each agent performs warping operations
on the 3D representations of system components.

Qbc

Qba

Qca

A

B C

X

Figure 9. Back warp applied to object C

Qbc

Qba

Qca

A

B C

X

Figure 10. Back warp shortens Qbc and Qba

In Figure 9, a system of 3 processes is represented. B is sending
messages to C and A; C is sending messages to A. We represent
queue lengths with pinned warps from the nearest corners, so
the warping from C towards A represents a lengthening message
queue. This suggests that A cannot keep up with processing the
traffic C is sending; A�s load is further indicated by the length of
the queue from B to A. We represent the amount of idle
processor by the scaling warp. Here we see A scaling down,
indicating increasing time gone by without idle processor time.

The system controller decides to try to balance the system by
slowing down the rate at which C sends messages to A for
processing. This is done my back warping C at point X,
accomplished by grasping the C object and pulling back the
warped corner. Figure 10 shows the effects of the back warp.
Since C slows down, A has more time to process messages from
B, and the queue from B to A shortens. The queue from C to A
shortens (by direct controller intervention). Process A has more
idle processor time as well, causing the scaling warp to relax and
returning A�s representation back to its normal shape.

3.4 Dynamic reconfiguration
``Dynamic reconfiguration'' refers to one's implementing
changes to a running application. Demand for reliable ways to
reconfigure is increasing, as the community seeks to perform
maintenance on highly available applications; to tune network
applications for best performance; and of course the ubiquity of
the Internet means we will increasingly need to interconnect
sophisticated resources on the fly in order to solve problems.
We now have mechanisms that allow us to reliably change a
program in ways unanticipated by the original programmer, but
as yet these techniques are not yet fully exploited in the
community. The Polylith toolbus allows dynamic
reconfiguration, stopping, re-hosting, and re-starting processes
according to execution parameters and performance constraints.
One barrier to effective reconfiguration has been the difficulty of
users being able to adequately see a system's dynamic state.
Users cannot apply unprecedented changes to their running
application if they are unable to grasp the configuration's current
state to know what they're starting with. Similarly, the many
types of constraints that affect reconfiguration are typically
encoded in a rule base that the user must be familiar with ahead
of time.
With MUVEE world, and 3D sliders, users can directly interact
with the configuration and state of their running applications.
Using virtual haptic responses (the visual warping can actually
cause users to sense feedback in their hands), users can gain
direct feedback on the suitability of various reconfiguration
options. Instead of having to remember constraints and state in
one's head, a user can explore options and effect dynamic
reconfigurations directly.
There are many constraints among the processes and
communication paths in a distributed system that can be
visualized in this way. Providing visible cues (via object
warping) to a user trying to relocate a process, or reallocate
resources among processes, can be an effective indicator of the
difficulty of doing what is requested; it could also be used to
indicate the relative costs of alternative solutions a user
develops for a configuration problem.
These previously described snap-copy warps are appropriate as
a manual way to signal system reconfigurations of different
kinds. Pulling an object into two could be a signal for process
replication. Manual movement of the new object copy could be
used to designate the new host. A host that is already overloaded
can signal the inappropriateness of a suggested migration by
"pushing back" on the object, visually warping it as the user
moved it close.

 7

4. Federations of Environmental Models
Another area in which we are applying 3D sliders is in creation
and execution of federations of environmental models. Scientists
who study the environment create mathematical models of
portions of it, and solve these models to get information that will
help with weather forecasting, resource allocation and use,
urban/rural planning, and other functions important to society.
Currently, environmental science is highly stratified. There are
atmosphere modelers, soil modelers, hydrologists, groundwater
modelers, marine biologists, and numerous other sub-disciplines
under the abstract umbrella of �the environment.� Models in
each area often need data from other models in other areas; for
example, to get proper results about surface water runoff for a
particular region, you need rainfall data that comes from an
atmosphere model. Environmental models do not interoperate
well; if they do at all, it is with considerable manual
programming effort to "knit" them together.

With support from the EPA we are developing a software
framework [4] for allowing environmental modelers to more
easily interconnect several models of different portions of the
environment to make a hybrid, federated model. The federated
model will give results no individual model component can. In
EPA terms, this is "multi-media modeling," where media are
soil, air, water, sediment, rock, etc. This is part of a larger EPA
effort called MIMS [5].

Our current system consists of an interconnection layer and
runtime controller written in Haskell; a metadata specification
component in XML; and component environmental models for
system testing, including river sediment models, watershed
models of the Neuse river basin, hydrology models for the
Neuse, and urban storm water runoff models.

We are currently constructing an interface that will allow
environmental scientists to construct federated models without
having to be Haskell or XML programmers. One component of
this interface is based on MUVEE and 3D sliders. We represent
each model that can participate in a federation as a shape in a
3D collaborative environment � ovoid for atmosphere, cube for
hydrological and water models, rectangle for land use and
terrestrial models, etc.

Information about each model component (its name, source
language, source code, parameters required, information
produced, documentation) is available hypertextually by
clicking on its representation. When a user tries to attach two
components together, their affinity for each other (are the source
languages compatible, are the input/output streams compatible,
are the modeling domains compatible) is shown by the input and
output ports warping towards each other when they are in
proximity. Full compatibility will cause touching. If
incompatible input and output streams are to be joined, the user
must manually warp one object towards another; this causes the
system to invoke a template for creation of a Haskell data filter
function; the user can select an appropriate one from a palate of
existing filters, or can write a new one for the occasion and add
it to the palate.

The snap-copy warp is useful in this context. If a user grasps an
object and moves it with a �snap�, meaning very rapid short
mouse motion, then it initially stretches, but then �breaks� into a
copy of the original object. This is useful in modeling because,
for example, a river flow model that covers hundreds of miles
may have to be connected to dozens of sediment model
processes, one for each few thousand yards of river length.
Setting this up can be tedious without good interaction features.

Once the federated model is composed, the MUVEE system
allows control of its execution as mentioned in the previous
section. Execution visualization causes warping of system
components according to the information a user has requested to
monitor. These degrees of freedom include queue lengths (or
amount of remaining input to be consumed), iteration count
(environmental models are solved iteratively), process idle time,
and process status.

5. Design pattern matching
While we have not begun to implement a 3D slider application
for this idea, we are currently doing research in design pattern
detection for software architectures [6]. In this project we are
developing elemental design patterns � object structures that are
fundamental to the manner in which computation is done in OO
languages, and from which the larger design patterns of GOF [7]
can be composed, as well as other patterns from the software
engineering literature. The elemental patterns are expressed in
an extension to sigma-calculus, and we are developing tools that
use this formalism to make inferences about program structure
to find the patterns used in their architecture.

The output of the pattern-finding tools in not expressed as
certainty. Rather, they report percentage estimated of how close
various program structures are to matching design patterns. We
think this is a good application for 3D sliders. A MUVEE
representation of the system architecture, in terms of patterns,
can be built, with the pattern shapes warped in different ways to
represent

• how far off the ideal is the code itself
• what aspects of the code are failing to match the

pattern ideals

This is still early work and we will not have this MUVEE
application for experimentation for another 6 months we expect.

 6. Related Work
Projects directly related to our work are scare, in that we have
combined Virtual Environment graphics with distributed system
toolkits to create collaborative VEs. Some work has been done
on visualization of process networks, but our 3D VE approach is
unique as far as we can determine.
In addition to Polylith [3], on which we have built MUVEE,
there are numerous other projects that have investigated
specification languages and support systems for constructing
distributed networks of processes [8,9,10,11,12,13]. Several
projects have explored distributed (and collaborative) virtual
environments in general [14,15,16,17,18,19], but none have
applied VE modeling to and manipulation to the configuration
of distributed systems themselves. These projects are mostly

 8

stand-alone systems that have explored basic DVE concepts of
object model interchange, networking performance, and
underlying application-level protocols.
In the area of user interfaces, use of graphical objects as
program control is limited mainly to 1D (sliders, wheels,
buttons, etc.) and 2D (2D sliders, joysticks, touch screens, etc.).
Our work on 3D sliders seems novel in this respect.
The warping work on which we build was first developed jointly
with B. Thomas [20] in a project that extended his earlier work
on animations in 2D user interfaces for drawing tools [1,21].
That work has been further extended into collaborative windows
application in general [22].
The use of 3D in user interfaces is well established, especially to
visualize data structures. Cone trees use 3D cones to show trees
in a form that can be manipulated for different viewpoints [23].
Fisheye views [24] distort, or enlarge, areas of a complex object
so that regions of focus or interest are enlarged, and other
regions de-emphasized; this has been applied in many areas,
including groupware [25] and the Web/hypermedia [26,2].
Haptic feedback is a well-established technique in VE use for
physical processes [27,28]; warping as we present it here
provides some similar feedback but without the need for force-
generating devices.

Acknowledgements
This research is supported in part by the United States
Environmental Protection Agency under grant #R82-795901-3,
and by the National Science Foundation under grant #9732577.

References
[1] Thomas, B.H., and P.R. Calder, �Animating direct
manipulation interfaces,� Proc. of UIST �95, ACM, Nov. 1995,
pp. 3-12.
[2] Muchaluat, D.C., R.F. Rodrigues and L.F.G. Soares,
�WWW Fisheye-View Graphical Browser,� Proc. of the 1998
MultiMedia Modeling, Lausanne, Oct. 1998, IEEE.
[3] Purtilo, J., �The Polylith software bus,� ACM Trans. on
Programming Languages and Systems, Jan. 1994, pp. 151-174.
[4] Alperin, M., J. Bowen, D. Herington, and D. Stotts, �A
Coupled Water Column-Sediment Biogeochemistry and
Hydrodynamic Model for the Neuse River Estuary," 2001
Annual North Carolina Water Resources Research Conference,
Mar. 2001, Raleigh NC.
[5] US Environmental Protection Agency, �MIMS: Multimedia
Integrated Modeling System,� web site
http://www.epa.gov/asmdnerl/mims/
[6] Smith, J.M., and D. Stotts, �Elemental Design Patterns: A
Link Between Architecture and Object Semantics,� Tech. Rep.
#TR02-011, Dept. of Computer Science, Univ. of North
Carolina, Chapel Hill, March 2002, http://rockfish-
cs.cs.unc.edu/pubs/TR02-011.pdf
[7] Gamma, E., R. Helm, R. Johnson, J. Vlissides, �Design
Patterns: Elements of Reusable Object-Oriented Software,�
Addison Wesley, 1995.

[8] Barbacci, M., D. Doubleday, C. Weinstock, and J. Wing,
�Developing applications for heterogeneous machine networks:
The Durra environment,� Computing Systems, 2, 1989, pp. 7-35.
[9] Wilden, J., et al., �Specification-level interoperability,�
Communications of the ACM, 34, May 1991, pp. 72-87.
[10] Habermann, N, and D. Notkin, �Gandalf: Software
development environments,� IEEE Trans. on Software
Engineering, 12(12), Dec. 1986, pp. 1117-1127.
[11] Hayes, R., S. Manweiler, and R. Schlicnting, �A simple
system fr constructing distributed, mixed-language programs,�
Software � Practice and Experience, 18, Jul. 1988, pp. 600-641.
[12] Magee, J., J. Kramer, M. Sloman, �Constructing distributed
systems in Conic,� IEEE Trans. on Software Engineering, 15,
Jun. 1989, pp. 663-675.
[13] Notkin, D., A. Black, and E. Lazowska, �Interconnecting
heterogeneous computer systems,� Communications of the
ACM, 31, 1988, pp. 258-273.
[14] Carlsson, C., and O. Hagsand, �DIVE � A platform for
multi-user virtual environments,� Computers and Graphics,
1993, pp. 663-669.
[15] Funkhouser, T.A., �Ring: A client-server system for multi-
user virtual environments,� Computer Graphics: Proc. of
SIGGRAPH �95, April 1995, pp. 85-92.
[16] Funkhouser, T.A., �Network topologies for scalable multi-
user virtual environments,� Proc. of IEEE VRAIS �96, April
1996.
[17] Macedonia, M.R., M.J. Zyda, D.R. Pratt, D.P. Brutzman,
and P.T. Barham, �Exploiting reality with multicast groups: A
network architecture for large-scale virtual environments,� Proc.
of IEEE VRAIS �95, 1995, pp. 2-10.
[18] Singh, G., L. Serra, W. Png, A. Wong, and H. Ng, �Sharing
object behaviors on the net,� Proc. of IEEE VRAIS �95, 1995,
pp. 19-25.
[19] Wang, Q., M. Green, and C. Shaw, �EM: An environment
manager for building networked virtual environments,� Proc. of
IEEE VRAIS �95, pp. 11-18.
[20] Thomas, B.H., D. Stotts, and L. Kumar, �Warping
Distributed Systems Configurations,� Proc. of 4th International
Conference on Configurable Distributed Systems, Annapolis,
Maryland, USA, May 1998, pp. 136-144.
[21] Thomas, B.H., P. Calder, and V. Demczuk, �Experiments
with animating direct manipulation in a drawing editor,�
ACSC'98 - The 21st Australasian Computer Science
Conference, Perth, Australia, Feb. 1998, pp. 157-168.
[22] Davies, M.L., and B.H. Thomas, �An animated 3D
manipulator for distributed collaborative window-based
applications,� Australasian User Interface Conference 2001 -
Australian Computer Science Communication, vol. 23, IEEE,
2001, pp. 116-123.
[23] Robertson, G., J. Mackinlay, and S. Card, �Cone trees:
Animated 3D visualization of hierarchical information,� Proc. of
Computer-Human Interaction '91, pp. 189-194, 1991.
[24] Furnas, G., �Generalised Fisheye Views,� Proc. CHI 86,
ACM, 1986, pp. 16-23.

 9

[25] Greenberg S., C. Gutwin, and A. Cockburn, �Sharing
fisheye views in relaxed-WYSIWIS groupware applications,�
Proc. of Graphics Interface, Toronto, May 1995, pp. 28-38.
[26] Tochtermann, K., and G. Dittrich, �Fishing for clarity in
hyperdocuments with enhanced fisheye-views,� Proc. of ACM
Conference on Hypertext, Milano, Italy, 1992, pp. 212-221.
[27] Brooks, F.P., M. Ouh-Yound, J.J. Batter, and P.J.
Kilpatrick, �Project Grope: Haptic displays for scientific

visualization,� Computer Graphics: Proc. of SIGGRAPH �90,
vol. 24, Aug. 1990, pp. 177-185.
[28] Mark, W., S. Randolph, M. Finch, J. Van Verth and R.M.
Taylor II, �Adding force feedback to graphics systems: Issues
and solutions,� Computer Graphics: Proceedings of
SIGGRAPH '96, Aug. 1996, pp. 447-452.

