
Out-of-Core Rendering of Massive Geometric Environments
Gokul Varadhan Dinesh Manocha

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract
We present an external memory algorithm for fast display of very
large and complex geometric environments. We represent the model
using a scene graph and employ different culling techniques for ren-
dering acceleration. Our algorithm uses a parallel approach to ren-
der the scene as well as fetch objects from the disk in a synchronous
manner. We present a novel prioritized prefetching technique that
takes into account LOD-switching and visibility-based events be-
tween successive frames. We have applied our algorithm to large
gigabyte sized environments that are composed of thousands of ob-
jects and tens of millions of polygons. The memory overhead of our
algorithm is output sensitive and is typically tens of megabytes. In
practice, our approach scales with the model sizes, and its rendering
performance is comparable to that of an in-core algorithm.
CR Categories:I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling - Curve, surface, solid, and object repre-
sentations
Keywords: External memory, large datasets, walkthroughs, visibil-
ity, LODs, prefetching

1 INTRODUCTION
Recent advances in acquisition and computed-aided design tech-
nologies have resulted in large databases of complex geometric
models. These datasets are represented using polygons or higher
order surfaces. Large gigabyte sized models composed of millions
of primitives are commonly used to represent architectural build-
ings, urban datasets, complex CAD structures or real-world envi-
ronments. The enormous size of these environments poses a num-
ber of challenges in terms of storage overhead, interactive display
and manipulation on current graphics systems.

Given the complexity of these massive models, a number of ac-
celeration techniques that limit the number of primitives rendered at
runtime have been proposed. These include visibility culling, model
simplification and use of sample-based representations. Many
of the resulting algorithms compute additional data structures for
faster rendering like levels-of-detail or multi-resolution representa-
tions, image or sample-based approximations or a separate occluder
database. All these additional information results in a much higher
storage complexity for these environments. Any in-core algorithm
for interactive display of such datasets needs many gigabytes of
main memory.

Given the size of these environments, many out-of-core algo-
rithms have been proposed that limit the runtime memory footprint.
Typically these algorithms load only a portion of the environment
into the main memory that is needed for the current frame and use
prefetching techniques to load portions of the model that may be
rendered during subsequent frames. They have been used for envi-
ronments that can be partitioned into cells or utilize view-dependent
simplification algorithms. However, these approaches are not di-
rectly applicable to very large, general and complex environments
that are composed of tens of millions of primitives.

Main Results: We present an external memory algorithm for fast
display of massive geometric environments. We represent the model
using a scene graph and precompute bounding boxes, levels-of-
detail (LODs) along with error metrics for each node in the scene
graph. At runtime the algorithm traverses the scene graph and
performs different culling techniques, including visibility culling

{varadhan,dm}@cs.unc.edu
http://gamma.cs.unc.edu/ooc/

and simplification culling, to compute thefront in the scene graph.
Our algorithm uses a combination of parallel fetching and prefetch-
ing techniques to load the visible objects or their LODs from sec-
ondary storage. The prefetching algorithm takes into account LOD-
switching and visibility events that change the front between suc-
cessive frames. Moreover, it employs a prioritized scheme to handle
very large datasets and front sizes at interactive rates. The runtime
memory overhead of our algorithm is output sensitive and varies as
a function of the front size. Some of the key features of our ap-
proach include:
• An out-of-core algorithm for rendering massive environments,

whose performance is comparable to that of an in-core algo-
rithm.

• A data representation that decouples the representation of the
scene graph from the actual primitives corresponding to each
node’s LOD.

• A prioritized prefetching algorithm that takes into account
LOD-switching and visibility events and scales with the model
size.

• A replacement policy that reduces the number of misses.
We have applied our algorithm to large environments composed of
thousands of objects and tens of millions of polygons. The resulting
scene graph sizes vary from hundreds of megabytes to a few giga-
bytes. Our out-of-core rendering algorithm typically uses a memory
footprint of tens of megabytes and can render the models with very
little or no loss in the frame rate, as compared to an in-core render-
ing algorithm.
Organization: The rest of the paper is organized in the following
manner. We give a brief survey of previous work on interactive dis-
play of large datasets and out-of-core rendering algorithms in Sec-
tion 2. We present our scene graph representation in Section 3 along
with different culling algorithms used for faster display. Section
4 describes the out-of-core rendering algorithm, including a priori-
tized prefetching scheme. We highlight its performance on complex
datasets in Section 5. In Section 6, we conclude and outline areas
for future work.

2 RELATED WORK
In this section, we give a brief overview of previous work on interac-
tive display of large models and out-of-core algorithms in computer
graphics, GIS and computational geometry.

2.1 Interactive display of large models
Different approaches have been proposed to accelerate the render-
ing of large datasets. These are based on model simplification, visi-
bility culling, and using image-based representations. Image-based
impostors are typically used to replace geometry distant from the
viewpoint and thereby speed up the frame rate [2, 1, 26, 30, 32].
Impostors can be combined with levels-of-detail (LODs) and occlu-
sion culling using a cell based decomposition of the model [1].

The UC Berkeley Architecture Walkthrough system [19] com-
bined hierarchical algorithms with visibility computations and
LODs for architectural models. The BRUSH system [31] used
LODs with hierarchical representation for large mechanical and
architectural models. The QSplat system [29] uses a single data
structure that combines view frustum culling, backface culling and
LOD selection with point rendering for progressive display of large
meshes at interactive rates. The IRIS Performer [28], a high per-
formance library, used a hierarchical representation to organize the
model into smaller parts, each of which had an associated bound-
ing volume. Erikson et al. [16] used a hierarchy of levels-of-detail
to accelerate the rendering of large geometric datasets. The Gi-
gaWalk system used a parallel rendering algorithm that combines
occlusion culling with hierarchical levels-of-detail [5]. Govindraju

Melanie K Tory

Administrator
69

et al. [21] have presented an improved occlusion algorithm that uses
three graphics pipelines.

2.2 Out-of-Core Algorithms
There has been lot of work on out-of-core or external-memory algo-
rithms in computational geometry and related areas [7, 36]. Nodine
et al. [27] presented an algorithm for efficient use of disk blocks to
perform graph searching on graphs that are too large to fit in internal
memory.

Funkhouser et al. [20, 18] described techniques for managing
large amounts of data in the context of an adaptive display algo-
rithm used to maintain interactive frame rates. They employed a
real-time memory management algorithm for swapping objects in
and out of memory, based on a spatial subdivision of architectural
models, as the observer moves through the model. Aliaga et al.
[1] presented a system for interactive rendering of complex models
that can be easily partitioned into virtual cells. It included prefetch-
ing and data management schemes for models that are larger than
available memory. However, no good algorithms are known for au-
tomatic decomposition of a large model into cells. Furthermore,
the use of image-based representations can lead to popping and dis-
occlusion artifacts.

[23, 24, 33, 6, 10] have presented out-of-core algorithms for
simplification of large models. Their focus is on offline simplifi-
cation of very large scanned or related datasets. We could use these
simplification algorithms to precompute levels-of-detail (LODs) &
hierarchical levels-of-detail (HLODs) of objects in our model.

El-Sana and Chiang [13] presented an external-memory algo-
rithm to support view-dependent simplification of datasets that do
not fit in main memory. They have demonstrated its performance
on models consisting of a few hundreds of thousand triangles that
take tens of megabytes of storage. Although view-dependent sim-
plification algorithms [22, 25, 37, 14] are elegant and work well for
spatially large objects, they may impose significant overhead dur-
ing visualization especially for scenes composed of tens of thou-
sands of objects. Instead of choosing an LOD per visible object,
view-dependent algorithms may query every active vertex or edge
of every visible object. In contrast with these approaches, our al-
gorithm uses static LODs because of simplicity and low runtime
overhead, and accepts their limitations in terms of potential “pop-
ping” artifacts that can occur as we switch between different LODs
at runtime.

A number of methods for out-of-core visualization including
isosurface extraction, and rendering of large unstructured grids have
been proposed [4, 8, 17]. [35, 12] presented application-controlled
segmentation & paging methods for out-of-core visualization of
computational fluid dynamics (CFD) data.

[34] presented a number of techniques such as indexing,
caching, and prefetching to improve the performance of walk-
through of a very large virtual environment. Their system supports
view frustum culling, but does not support levels-of-detail. [3] pre-
sented a system for interactive visualization of aircraft and power
generation engines. Their system supports LOD and dynamic load-
ing. [11] present a system for interactive out-of-core rendering of
large models.

[9] proposed multi-resolution caching and prefetching mecha-
nisms to support virtual walkthrough applications in the distributed
environment. Our rendering algorithm in addition to supporting
multi-resolution object models also employs view frustum culling
and simplification culling [16].

3 SCENE REPRESENTATION
In this section, we describe our scene representation. Our rendering
algorithm uses a scene graph based representation along with static,
precomputed LODs. We also discuss different culling techniques
used to limit the number of primitives that are rendered at runtime.

3.1 Scene Representation
Given a large environment composed of a number of objects, we
represent it using a scene graph. We assume that the scene graph
has been constructed using space partitioning or clustering-based
approaches. The leaf nodes in the scene graph represent original

Figure 1: Scene Graph Representation: A, B, C are nodes of the
scene graph. Each node is associated with an HLOD which is a set
of approximations for the node as well as its descendants. We use
the term,object-repto refer to each individual approximation (e.g
A[0], B[2], C[1]).
objects in the scene. The algorithm also precomputes static levels-
of-detail (LODs) for each object and associates them with the leaf
nodes. In addition to the LODs, the algorithm precomputes dras-
tic approximations of portions of the environments and associates
them with the intermediate nodes in the scene graph. In this pa-
per, we restrict ourselves to hierarchical levels-of-detail (HLODs)
[16], though our out-of-core algorithm is also directly applicable to
image-based impostors [26, 1]. An HLOD of a node in the scene
graph is an approximation of that node as well as its descendants.
In the rest of the paper, we use the termobject-rep, to refer to the
set of approximations associated with each node in the scene graph,
including different LODs, HLODs or impostors. Different object-
reps associated with a node are represented as a linear array from
the coarsest object-rep to the finest object-rep, including the original
object-rep. They are primarily used for rendering acceleration. In
addition to the object-reps, the algorithm also stores additional data
structures like bounding boxes that are used by visibility culling al-
gorithms. Moreover, it associates error metrics with each object-rep
that are precomputed by the simplification algorithm.

Notation: We use the following notation in the rest of the paper. Let
Num(N) be the number of object-reps associated with a nodeN .
Let PAR(N) be its parent node andCHD(N) represent its chil-
dren nodes. Moreover, we useN [i] to represent theith object-rep of
nodeN . For an object-repO = N [i] and an integerk > 0, we can
define its parentPAR(O), childrenCHD(O), k-th level ascen-
dantASC(O, k) and descendantsDSC(O, k) in the scene graph as
follows:

PAR(N [i]) =

{
N [i− 1] i > 0
P [Num(P)− 1] i = 0

where P = PAR(N)

CHD(N [i]) =

{
{N [i + 1]} i < (Num(N)− 1)
∪ {C[0] | C ∈ CHD(N)} i = (Num(N)− 1)

ASC(N [i], k) =

{
PAR(N [i]) k = 1
ASC(PAR(N [i]), k − 1) k > 1

DSC(N [i], k) =

{
CHD(N [i]) k = 1
∪{DSC(C, k − 1)| C ∈ CHD(N)} k > 1

This is illustrated in Fig 1.A is a node of the scene graph. We
havePAR(A[1]) = A[0], CHD(A[0]) = {A[1]},PAR(B[0]) =
A[2], CHD(A[2]) = {B[0], C[0]}, ASC(B[1], 2) = A[2],
DSC(A[2], 2) = {B[1], C[1]}.

Each object-repA[i] is associated with an object-space error
metric, EA[i], computed by the simplification algorithm. For ex-
ample,A[0], A[2] are the coarsest and finest objectreps of nodeA,
respectively. Moreover,EA[0] > EA[1] > EA[2]. To obtain a finer
representation, as compared toA[2], we descend toA’s children,B
andC. Based on our representation,{B[j], C[k]} j, k ∈ {0, 1, 2}
is a finer representation thanA[i] i ∈ {0, 1, 2}. At runtime, the
object-space error metricEA[i] of nodeA[i] is projected to the view
plane and the screen-space error boundεA[i] is computed.

3.2 Scene Graph Traversal
Given a scene graph representation, the rendering algorithm tra-
verses the scene graph from the root node during each frame. When
it reaches a nodeN , it performs any subset of culling techniques
and based on their outcome traverses the scene graph recursively.
These include:

Administrator
70

Figure 2: Front: The exterior black triangle represents the scene
graph. Front (in red) is a subset of the cut of the scene graph.

• View-Frustum culling : Check whether the node’s bounding
box lies in the viewing frustum.

• Simplification Culling : Check whether any object-rep asso-
ciated with that node satisfies the user-specified error bound.
Among all object-reps associated with the node, the algorithm
chooses the coarsest object-rep that meets the screen-space er-
ror criteria. Of all object-repsN [i] that satisfy

εN [i] <ε
it chooses the one with smallesti. Hereε is the user-specified
error tolerance. If such an object-repN [i] exists, the algorithm
renders it and terminates the traversal [16].

• Occlusion Culling: Check whether the node is occluded by
other objects. Our current implementation does not perform
occlusion culling, though the out-of-core rendering algorithm
can be easily extended to handle it.

At the end of the traversal, the algorithm computes a list of object-
reps that need to be rendered during the current frame. We refer
to the resulting set of object-reps as thefront. The front represents
the working set of object-reps for the current frame and corresponds
to a subset of a cut of the scene graph (as shown in Fig 2). Some
nodes in a cut of the scene graph may not be visible from the current
viewpoint, and are therefore, not part of the front. The front is not
merely a collection of nodes in the scene graph, but includes only
one of the object-reps associated with each node. The index of the
object-rep selected for each node represents an additional LOD di-
mension. As the viewpoint moves, the front changes in many ways.
These include different events:

1. LOD Switching Events:
• An object-rep that was in the front may be replaced by

a coarser or finer object-rep associated with the same
node.

• An object-rep that was in the front may get replaced ei-
ther by an object-rep belonging to an ascendant node or
by a set of object-reps from the descendant nodes in the
scene graph.

Formally, an object-repO can get replaced either by
ASC(O, k) or DSC(O, k) for somek. These events occur
when the user zooms in or out of the scene.

2. Visibility Events :
• An object-rep that was in the front may disappear be-

cause the corresponding node is no longer visible.
• An object-rep that wasn’t present earlier may appear be-

cause the corresponding node has become visible.
These events occur when the user pans across the scene or
because of occlusion events.

Our algorithm takes advantage of the fact that the relative changes in
the front between successive frames are typically small, and there-
fore utilizes spatial and temporal coherence in designing an out-of-
core rendering algorithm.

3.3 Scene Graph Skeleton & Out-of-Core
Representation

In order to traverse the scene graph and compute the front, our ren-
dering algorithm only needs the scene graphskeleton. The skeleton
includes the nodes and connectivity information like parent-child
relationships, as well as additional data structures including bound-
ing boxes and error metrics associated with object-reps used by dif-
ferent culling algorithms. It stores all the object-reps on the disk and
loads them on the fly based on front computation and the fetching
algorithm, as described in Section 4. The resulting skeleton typi-
cally takes only a small fraction of the overall model representation.

Figure 3: Parallel Processes: Our algorithm uses two processes,
one for rendering and one for I/O. The figure shows the tasks per-
formed by each of the two processes in a given frame time

This division of the model into in-core and out-of-core representa-
tions ensures that the main memory overhead is almost equal to the
size of the skeleton. The rendering algorithm accepts a memory
footprint size as input and we ensure that its memory usage can-
not exceed this limit. Moreover, we assume that the given memory
footprint is large enough to hold the skeleton.

4 OUT-OF-CORE RENDERING ALGO-
RITHM

In this section, we present our out-of-core rendering algorithm. It
uses two synchronous processes, one for rendering and the second
one manages the disk I/O. Each of them use the scene representa-
tion described in Section 3. We also present a novel prefetching
algorithm that takes into account changes in the front between suc-
cessive frames and uses a prioritized scheme to handle very large
datasets. We use terms like “hit” or “miss” to refer to the fact that a
particular object-rep is present in the main memory or not, respec-
tively.

4.1 Parallel Rendering & I/O Management
Our algorithm uses two main processes: one for scene graph traver-
sal and rendering (PR), and the second one for I/O management
and prefetching (PI). Both of them run in parallel and operate syn-
chronously (see Fig 3).

PR traverses the scene graph and computes the front based on
the current viewpoint and scene graph skeleton. During this time,
PI continues to perform prefetching for the the previous frame
(Stage I). OncePR finishes the front computation, it sends a fetch
command toPI . On receiving a fetch command,PI gets synchro-
nized withPR and fetches object-reps for the current frame. The
fetch command has information about the set of object-reps in the
current front.PI divides this set into two lists:
• LI : It is the list of all object-reps that are currently in main

memory.
• LO: It is the list of all object-reps that are not in the main

memory and need to be loaded from the disk.
PI starts loading the object-reps belonging toLO (Stage II in Fig
3). Different object-reps that constitute the front can be rendered
in any order. As a result,PR starts rendering the object-reps that
belong toLI and not wait till all the object-reps inLO are loaded
in the main memory. The rendering and the loading of out-of-core
object-reps proceeds in parallel. IfPR has rendered all the object-
reps belonging toLI , it has to wait till new object-reps are loaded.
WheneverPI loads an object-rep, it removes it fromLO and ap-
pends it toLI . OncePI has fetched all the object-reps belonging
to LO, it spends the remainder of the frame time prefetching other
object-reps that may be needed for subsequent frames (Stage III).

4.2 Prefetching
In an interactive application, there is considerable coherence be-
tween successive frames. Our algorithm uses prefetching tech-
niques to improve the hit rate. During each frame,PI performs
prefetching during two stages of that frame, Stage I& Stage III as

Administrator
71

Figure 4:Visibility Prefetching: Each of the two processes,PR &
PI use two separate view frustums,FR & FI respectively.FR is
in black whileFI is the larger view frustum in red

shown in Fig. 3. The goal of prefetching is to load most of the
object-reps that the algorithm needs to render during subsequent
frames. The prefetching is performed in parallel byPI .

4.2.1 LOD Switching Events
As the user traverses through the scene, it typically moves closer to
some portions of the scene and away from the other. Objects that
are closer to the user need to be rendered at a finer resolution. The
object-reps (O) representing these objects are replaced by their de-
scendants (DSC(O, k) for somek) in the scene graph. Similarly,
objects that move farther from the viewer get replaced by their as-
cendants (ASC(O, k) for somek). Moreover, the object-rep may
switch between different LODs or HLODs of the same node. We
avoid misses due to LOD switching events by prefetching multiple
levels of ascendants and descendants of object-reps in the front.

4.2.2 Visibility Events
When the user pans across the scene, objects that were not visible
earlier may become visible. In case of view frustum culling, typi-
cally these objects are outside the view frustum but close to the edge
of the view frustum. We avoid such misses by lettingPI use an
expanded view frustum for prefetching (FI) that bounds the view
frustum used for rendering (FR) (see Fig 4). The size ofFI can be
adapted based on the rate at which the user pans across the scene.

We also prioritize object-reps outside ofFR that lie withinFI
depending on the angle they make with the line-of-sight. In partic-
ular, we assign a higher priority to object-reps that make a smaller
angle. Letθ0, θ1 be the angles associated with the two view frus-
tums. For an object-repO that makes an angleθ with line of sight,
we associate an angle-priority functionAngPr(O) as follows:

AngPr(O) =
1

1 + θ ∼ θ0
θ1

whereθ ∼ θ0 =

{
θ − θ0 θ > θ0

0 otherwise

We prioritize prefetching of object-reps based on theAngPr()
function.

4.2.3 Priority-based prefetching
One of our goals is to handle very large datasets at interactive rates.
For large models, the number of object-reps in a front can be very
large. For example, there are more than6, 500 object-reps in the
front corresponding to the Double Eagle model in one of the sam-
ple paths. As a result, we want to use a prefetching strategy that
can handle large front sizes at interactive rates. Typically, the user’s
motion governs the rate at which an object-rep switches between
different LODs between successive frames. To improve the hit rate,
we prefetch multiple levels of ascendants and descendants of the
node. Given a very large environment, whose front may consist
of thousands of nodes and object-reps, it may not be possible to
prefetch multiple levels of ascendants and descendants of all the
object-reps in the front in the given frame time. As a result, we
prioritize different object-reps in the front and the prefetching al-
gorithm selects them based on their priority. An object-rep that is
more likely to switch between the LODs is assigned a higher pri-
ority. The key issue is to predict which object-reps in the front are
going to switch between different LODs. The switching takes place
when the projected screen-space error for an object-rep exceeds the
user-specified error tolerance (ε).

Figure 5: Binning: The range[0, δ) is divided into B intervals,
each interval corresponding to a bin as labeled in the figure.ε is the
user-specified error tolerance. In this fig,ε= 10, δ = 12, B = 13

Initially, we assign a priority to an object-repO depending on
how close its projected screen-space error,εO, is to the error tol-
eranceε. We compute the absolute difference,| εO - ε|, and the
priority value varies as an inverse function of this difference. More-
over, we use a simple bucketing strategy, similar to bucket sort, to
classify different object-reps. The classification of an object-repO,
is based on computing its projected screen-space errorεO and plac-
ing it in the bin whose interval containsεO. We use a limited num-
ber of priority levels or bins, each representing a range of projected
screen-space errors as shown in Fig 5. Let us assume thatδ > ε. We
divide the range[0, δ) into B intervals and assign each of the inter-
vals to one of theB bins. Bins whose intervals are closer toε have a
higher priority. For example, in Fig 5, binBi is associated with the
interval [i, i + 1). The binB10, whose interval containsε has the
highest priority and the binsB9, B11, B8, B12, B7, B6, B5,. . ., B0

represent an ordering based on decreasing priorities. Unlike bucket
sort, we do not sort the items within a bin. Each bin is associated
with a queue. When an item is placed in a bin, it is appended to the
end of the queue associated with that bin.

During each frame, we start by classifying each object-rep in
the front. After the classification step, we start processing items
from the bins. We select an item from the highest priority bin
whose queue is non-empty. When we select an object-repO from
a bin, our goal is to ensure that whenO switches between the
LODs, the new LOD is in the memory. ThePI process loads
PAR(O) and CHD(O) and classifies them into appropriate
bins. The algorithm prefetches multiple levels of ascendants and
descendants. We continue to process different object-reps in this
manner until the end of the frame. The pseudo-code corresponding
to the classification (CLASSIFY) and prefetching (PREFETCH)
steps is given below.

CLASSIFY(O)

1. Calculate projected screen-space errorεO of object-repO
2. PlaceO in bin Bi whose interval[i, i + 1] containsεO

PREFETCH()

1. while (not received a fetch command fromPR) do
2. Pick object-repO from highest priority bin that is non-

empty
3. for each object-repX ∈ PAR(O) ∪ CHD(O) do
4. Load X into main memory
5. CLASSIFY (X)

Ultimately we combine the priority values based on projected
screen-space error metric along with the angle-priority function to
obtain an integrated priority function,Priority(O), for an object-
repO:

Priority(O) =

{
εO ∗AngPr(O) εO < ε
εO/AngPr(O) εO > ε

We perform the classification procedure mentioned above based
on the integrated priority function. Ascendants of an object-rep in
the front can have projected screen-space errors greater thanε and
so we useδ >ε. By varyingδ, we can vary the number of ascen-
dants that are prefetched.

PI flushes the bins and classifies the front only when the view-
point changes. Another issue is that object-rep sizes can vary a lot
for e.g from50 B to 20 MB in our models. Therefore, we cannot
allow loading of an object-rep to be a non-preemptible operation as
that can stallPR. As a result,PI loads an object-rep in terms of
blocks, and checks withPR after it has loaded each block.

Administrator
72

Figure 6:Powerplant model (PP) is a 0.6 gigabyte model consist-
ing of over13 million triangles and1, 200 objects (see Table 1).
Our out-of-core system can render this model on a machine with
128 MB memory using a memory footprint of15 MB and the result-
ing frame rate is comparable to an in-core rendering algorithm that
needs over0.6 GB of main memory.

Figure 7:Object-reps for replacement are chosen from the head of
the InMemoryList. Object-reps in the front (in red) and those that
have been prefetched (in green) lie beyond StartTail in the InMem-
oryList in an increasing order of priority. As a result they are less
likely to be evicted.
4.3 Replacement Policy
The prefetching and fetching algorithms load object-reps into the
main memory from the disk. Given an upper bound on the size of
main memory, any out-of-core rendering algorithm needs a mech-
anism to remove or replace some of the object-reps from the main
memory. We use a variation of the standard LRU (least recently
used) policy. It ensures that we do not remove the object-reps that
belong to the front or object-reps that were recently fetched from
the disk.

PI maintains the set of in-core object-reps in the memory in a
doubly linked list,InMemoryList. It performs a number of opera-
tions on this list. These include:

1. At the beginning of Stage II (see Fig 3),PI stores a pointer
StartTail to the tail ofInMemoryList.

2. In course of subsequent fetching and prefetching, whenPI
accesses an object-rep, it performs the following updates:

• If the object-rep is already in memory, it moves it from
its existing position inInMemoryListto the new position
immediately afterStartTail.

• If the object-rep is not already in memory, it loads it and
inserts it afterStartTail.

3. WhenPI needs to select replacement candidates, it chooses
the object-rep from theInMemoryList, starting at the head of
the list. However, if the particular object-rep is currently being
rendered, it skips it and moves to the next object-rep in the
linked list.

In course of fetching and prefetching operations, each timePI
accesses an object-rep, it positions it to lie immediately afterStart-
Tail. As a result, the object-reps that are accessed lie beyondStart-
Tail in an order which is reverse of the order in which they were
accessed.

Let OF be the set of object-reps that correspond to the front
andOP be the set of object-reps that have been prefetched.PI
accesses the object-reps inOF during Stage II before it accesses
the object-reps inOP during Stage III of the current frame or Stage
I of next frame. Consequently, the object-reps inOF lie beyond
the object-reps inOP (see Fig 7). Moreover, it accesses the object-
reps inOP in a decreasing order of priority. As a result, all the

Figure 8: Double Eagle tanker model (DE) is a 3 gigabyte envi-
ronment consisting of over82 million triangles and127, 000 objects
(see Table 1). Our out-of-core system renders this model on a ma-
chine with128 MB memory using a memory footprint of35 MB and
the frame rate is comparable to an in-core rendering system which
requires over3 GB of main memory.

object-reps inOP are located beyondStartTailand are arranged in
an increasing order of priority (see Fig 7). This ensures that when
replacement object-reps are chosen from the head ofInMemoryList,
the object-reps “closest” to the front are the least likely candidates
for replacement.

5 IMPLEMENTATION AND RESULTS
We have implemented the out-of-core rendering algorithm de-
scribed above and used it to render complex environments. Our
current implementation uses view frustum culling and simplifica-
tion culling on a scene graph that consists of LODs and HLODs. It
uses two CPUs for each of the two processes,PR &PI and a sin-
gle graphics pipeline. Our system uses C++, GLUT, and OpenGL.
We performed tests on two machines: an SGI workstation with two
195 MHZ R10000 MIPS processors, MXI graphics board, 128 MB
of main memory (Machine 1) and an SGI Onyx with multiple 500
MHZ R14000 MIPS processors, Infinite Reality3 graphics pipelines
and 16 GB of main memory (Machine 2). We performed tests on
Machine 1in order to show that our out-of-core algorithms require a
limited memory footprint and onMachine 2to compare the perfor-
mance of our out-of-core rendering algorithm with that of an in-core
rendering algorithm.

Env Poly Objects Nodes Height Skeleton Data
×106 ×103 ×103 MB MB

PP 12.2 1.2 1.8 13 0.38 596
DE 82.4 127 190 14 10 2, 974

Table 1: Benchmark Models: Statistics for the Powerplant model
(PP) & Double Eagle Tanker model (DE).

We have tested our algorithm on two large environments, a Pow-
erplant model (PP) (Fig 6) and Double Eagle Tanker model (DE)
(Fig 8). The size of PP and DE models is about600 MB and3 GB,
respectively. The scene graphs and the LODs and HLODs associ-
ated with each node were computed using the algorithm presented
in [16]. Table 1 tabulates the polygon count, number of objects,
number of scene graph nodes, scene graph height, size of the scene
graph skeleton, and size of scene graph data for the two models.

We generated different paths in these environments to test the
performance of our algorithms. The user’s motion in these paths had
a lot of pan, and sudden motion. Moreover, the front size in these
paths varies considerably. Typically, the front size is large when
the viewer is inside an environment. We recorded multiple paths,
with the same number of frames in each path, and the image quality
is governed by the user-specified error tolerance. As a result, it is
sufficient to measure the frame rate in order to test the performance
of our algorithm for a given memory footprint. In the rest of this
section, we compare the performance of three different algorithms
and systems:

• Incore: It is the in-core system that loads the entire scene
graph and all the object-reps in the main memory.

Administrator
73

(a) Powerplant (PP) (b) DoubleEagle (DE)

Figure 9:Frame time: Plots in blue & red show the frame times for the out-of-core system without prefetching (OOCNoPre), & out-of-core
system with prefetching (OOCPre), respectively onMachine 1that has 128 MB of main memory. Plots in green & black show two times the
frame times forOOCPre& the in-core system (Incore) respectively onMachine 2that has 16 GB of main memory. TheIncoresystem needed
more than0.6 and3 giga-bytes of main memory for rendering thePP& DE models respectively. TheOOCNoPre& OOCPresystems used
a memory footprint of15 MB and35 MB for PP& DE respectively. We see that theOOCPresystem matches the performance of theIncore
system.

• OOCNoPre: It initially loads the scene graph skeleton and
performs parallel rendering & I/O management without any
prefetching. It fetches data from the disk in Stage II, but is
idle during Stages I & III (see Fig 3).

• OOCPre: It initially loads the skeleton and performs both
parallel rendering & I/O management as well as prioritized
prefetching (OOCPre).

Figure 9 shows the relative performance of different systems forPP
& DE models, respectively. We imposed a memory footprint of15
MB and35 MB for PPandDE respectively. The memory footprint
holds the object-reps loaded by thePI and does not account for the
size of the scene graph skeleton, which is constant for each model.
Fig 10 shows the front size in each frame for the two models. Front
size is calculated by summing up the sizes of the object-reps in the
front. We observe that the maximum front size is about7 MB & 8
MB for PP & DE respectively. Fig 11(b) shows the front size for
DE for a sample path that uses a lower error tolerance and a much
higher image fidelity. In this case, the maximum front size is about
35 MB. The maximum number of object-reps in the front is about
300 for thePP& varies in the range2300-6500 for theDE.

5.1 Parallel Rendering & I/O Management
The overall performance of theOOCNoPresystem matches with
that of theOOCPresystem at many places in the sample paths.
However, the frame time plot ofOOCNoPresystem has several
spikes, which typically correspond to relatively large changes in the
viewpoint. Such motions are not uncommon in a walkthrough ex-
perience, when a user is exploring new parts of the environment. It
can lead to drastic changes in the front. The object-reps in the new
front may not have been in the main memory and this can result in
more misses, which increases the fetching time. The overall render-
ing or frame time doesn’t get affected as long as the time to fetch
object-reps inLO is less than the time to render object-reps inLI .
This is the main benefit of performing rendering & I/O management
in parallel. However, a large number of misses can cause the fetch-
ing time to dominate the rendering time and this results in spikes in
the frame time plot. Fig 10 shows the amount of data that is fetched
from a disk in each frame and compares it with the front size for
those paths. TheOOCNoPresystem fetches a large amount of data
from the disk and this results in the slowdown or a break in the sys-
tem’s performance. The memory usage is equal to the amount of

data stored in main memory at any given time. The memory usage
of OOCNoPredoes not exceed the memory footprint limit.

5.2 Prioritized Prefetching
Fig 9 compares the performance ofOOCPrewith OOCNoPreand
Incorefor the two models. They highlight the benefits of prioritized
prefetching. We see that the frame time plot forOOCPredoes not
have any spikes. Moreover, theOOCPresystem does not need to
fetch a large amount of data from the disk (Fig 10) and its frame
does not have major variations due to the I/O bottleneck. Moreover,
the performance ofOOCPrematches that of the in-core system,
Incore. Also the memory usage ofOOCPredoes not exceed the
memory footprint limit.

We tested the performance of our prefetching scheme for the
Double Eagle model with a sample path and a smaller user-specified
tolerance. Fig 11(b) shows the front size for this scenario and the
fetch size for theOOCPresystem. We notice that the maximum
front size can be35 MB and the maximum number of object-reps in
the front can be6500. For a100 MB footprint, the resulting system
fetches only a small amount of data from disk.

Inspite of large changes in the viewpoint, our out-of-core sys-
tem, OOCPre resulted in very few misses on the sample paths in
these complex environments (Fig 11(b)). Although the front can
have up to6500 object-reps, our priority-based prefetching scheme
was able to accurately predict the object-reps that were likely to be
used during subsequent frames. As a result, our system is able to
handle very large front sizes.

5.3 Size of Memory footprint
Fig 11 highlights the size of data that is fetched from the disk for
OOCPreas we vary the memory footprint. Notice that as we in-
crease the memory footprint, the amount of data that is fetched from
the disk during Stage II of the I/O process, decreases substantially
for OOCPre. As a result, there are very little or no spikes in the
frame rate for theOOCPresystem, as compared to theOOCNoPre
system. Moreover, theOOCPresystem matches the peak perfor-
mance of theIncore system. We achieve this performance with a
relatively small memory footprint, typically of the order of few tens
of megabytes. For example, for the Double Eagle model, we achieve
peak performance using a35 MB footprint (Fig 9(b)).

The prioritized prefetching is very useful even when the system

Administrator
74

(a) Powerplant (PP) (b) Double Eagle (DE)

Figure 10:Fetch size: The black graph shows the half the front size. The blue & red plots show the fetch sizes (in Stage II) forOOCNoPre
& OOCPresystems onMachine 1, respectively. TheOOCNoPre& OOCPresystems used a memory footprint of15 and35 MB for PP& DE
respectively. For the Double eagle model theOOCNoPresystem needed to fetch about2 MB from disk whereas theOOCPresystem had to
fetch less than0.1 MB for the same frame.

is using a small memory footprint, say8MB (Fig 11(a)). However,
in such a case the frame time plot forOOCPrehas spikes. These
spikes correspond to the case when front size is close to8 MB.
Since the memory footprint was8 MB, this implies thatPI can only
prefetch relatively small amount of data. In such cases, the perfor-
mance ofOOCPreis only slightly better than that ofOOCNoPre.
However when the front size is smaller than8 MB, PI is able to
prefetch sufficient number of object-reps and thereby result in few
misses. This benchmark also demonstrates the effectiveness of our
replacement policy which ensures that object-reps in the front and
those which have been prefetched are not removed from the main
memory.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an algorithm for out-of-core ren-
dering of massive geometric environments. We represent the model
using a scene graph and precompute levels-of-detail for different
nodes. We use a parallel approach to render the scene as well as
fetch objects from the disk in a synchronous manner. We have
presented a novel prefetching technique that takes into account the
LOD-based and visibility-based events, which can cause changes in
the front between successive frames. The resulting algorithm has
been applied to two complex environments whose size varies from
few hundreds MBs to a few GBs. It scales with the model sizes
and the memory requirements of the algorithm are output sensitive,
typically few tens of MBs for our sample paths.

There are many avenues for future work. We would like to com-
bine our out-of-core scheme with occlusion culling [5, 21], in ad-
dition to view frustum culling and simplification culling. Our cur-
rent implementation uses pre-computed static LODs and it may be
worthwhile to explore hybrid schemes that combine static LODs
for small objects in the scene with view-dependent simplification
of large objects. It may be useful to incorporate external-memory
techniques such as blocking for efficient I/O. We would like to in-
vestigate motion prediction schemes to further improve the perfor-
mance of our prefetching algorithm. We would also like to develop
target-frame rate schemes that use a bounded memory footprint.

Acknowledgement
This work has been supported in part by ARO Contract DAAD19-
99-1-0162, NSF awards ACI 9876914 and ACI 0118743, ONR
Young Investigator Award (N00014-01-1-0067), a DOE ASCI
grant, and by Intel Corporation. The Double Eagle model is cour-

tesy of Rob Lisle, Bryan Marz, and Jack Kanakaris at Newport
News Shipbuilding. The Power Plant model is courtesy of an anony-
mous donor. We would like to thank the members of UNC Walk-
through group for useful discussions and support. Special thanks to
Shankar Krishnan and Claudio Silva for their help.

References
[1] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson,

K. Hoff, T. Hudson, W. Stuerzlinger, E. Baker, R. Bastos,
M. Whitton, F. Brooks, and D. Manocha. MMR: An inte-
grated massive model rendering system using geometric and
image-based acceleration. InACM Symposium on Interactive
3D Graphics, 1999.

[2] D. Aliaga and A. Lastra. Automatic image placement to pro-
vide a guaranteed frame rate. InACM SIGGRAPH, 1999.

[3] Lisa Sobierajski Avila and William Schroeder. Interactive vi-
sualization of aircraft and power generation engines. InIEEE
Visualization, pages 483–486, 1997.

[4] C. Bajaj, V. Pascucci, D. Thomson, and X. Y. Zhang. Paral-
lel accelerated isocontouring for out-of-core visualization. In
IEEE Parallel Visualization and Graphics Symposium, pages
87–104, 1999.

[5] W.V. Baxter, A. Sud, N.K. Govindaraju, and D. Manocha. Gi-
gawalk: Interactive walkthrough of complex environments. In
Eurographics Rendering Workshop, 2002.

[6] F. Bernadini, J. Mittleman, and H. Rushmeier. Case study:
Scanning michelangelo’ florentine pieta. InACM SIGGRAPH
99 Course Notes Course 8, 1999.

[7] Y.J. Chiang, M.T. Goodrich, E.F. Grove, R. Tamassia, D.E.
Vengroff, and J.S. Vitter. External-memory graph algorithms.
In ACM-SIAM Symposium on Discrete Algorithms, 1995.

[8] Y.J. Chiang and C.T. Silva. External memory techniques
for isosurface extraction in scientific visualization. In
AMS/DIMACS Workshop on External Memory Algorithms
and Visualization, 1998.

[9] J.H.P. Chim, M. Green, R.W.H. Lau, H.V. Leong, and A. Si.
On caching and prefetching of virtual objects in distributed
virtual environments. InACM Multimedia, 1998.

[10] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. Ex-
ternal memory simplification of huge meshes. InTechnical
Report IEI:B4-02-00, IEI, CNR, Pisa, Italy, 2000.

Administrator
75

(a) Double Eagle - small front (b) Double Eagle - large front

Figure 11:These graphs highlight the fetch sizes (in Stage II of the I/O process) used by theOOCPresystem based on different memory
footprints: In the two figures, the black plot shows half and one-eighth of the front size respectively. The green, blue & red plots show the fetch
sizes corresponding to different memory footprints. We varied the front sizes and the frame rate by varying the paths and the user-specified
error thresholds. The figure on the left (test performed onMachine 1) has a maximum front size of8 MB and shows fetch sizes for different
memory footprints of8 MB, 25 MB & 35 MB. The figure on the right (test performed onMachine 2) has a maximum front size of35 MB and
shows fetch sizes corresponding to memory footprints of35 MB, 50 MB & 100 MB.

[11] W. Correa, J. Klosowski, and C. Silva. iwalk: Interactive out-
of-core rendering of large models. InTechnical Report TR-
653-02, Princeton University, 2002.

[12] M. Cox and D. Ellsworth. Application-controlled demand
paging for out-of-core visualization. InIEEE Visualization,
pages 235–244, 1997.

[13] J. El-Sana and Y.-J. Chiang. External memory view-dependent
simplification.Computer Graphics Forum 2000, 19(3)

[14] J. El-Sana and A. Varshney. Generalized view-dependent
simplification. Computer Graphics Forum, pages C83–C94,
1999.

[15] C. Erikson and D. Manocha. Gaps: General and automatic
polygon simplification. InACM Symposium on Interactive 3D
Graphics, 1999.

[16] C. Erikson, D. Manocha, and B. Baxter. Hlods for fast display
of large static and dynmaic environments.ACM Symposium
on Interactive 3D Graphics, 2001.

[17] R. Farias and C.T. Silva. Out-of-core rendering of large un-
structured grids. InIEEE Computer Graphics and Applica-
tions, 2001.

[18] T. Funkhouser. Database management for interactive display
of large architectural models. InGraphics Interface, 1996.

[19] T.A. Funkhouser, D. Khorramabadi, C.H. Sequin, and
S. Teller. The ucb system for interactive visualization of large
architectural models.Presence, 5(1):13–44, 1996.

[20] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive dis-
play algorithm for interactive frame rates during visualization
of complex virtual environments. In James T. Kajiya, edi-
tor, Computer Graphics (SIGGRAPH ’93 Proceedings), vol-
ume 27, pages 247–254, August 1993.

[21] N.K. Govindaraju, A. Sud, Sung-Eui Yoon, and D. Manocha.
Parallel occlusion culling for interactive walkthroughs using
multiple gpus. InUNC Technical report TR02-027, 2002.

[22] H. Hoppe. View dependent refinement of progressive meshes.
In ACM SIGGRAPH Conference Proceedings, pages 189–
198. ACM SIGGRAPH, 1997.

[23] P. Lindstrom. Out-of-core simplification of large polygonal
models. InACM SIGGRAPH, 2000.

[24] P. Lindstrom and C.T. Silva. A memory insensitive technique
for large model simplification. InIEEE Visualization, 2001.

[25] David Luebke and Carl Erikson. View-dependent simplifica-
tion of arbitrary polygonal environments. InSIGGRAPH ’97

[26] P. Maciel and P. Shirley. Visual navigation of large environ-
ments using textured clusters. InACM Symposium on Interac-
tive 3D Graphics, pages 95–102, 1995.

[27] M.H. Nodine, M.T. Goodrich, and J.S. Vitter. Blocking for
external graph searching. InACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems, 1993.

[28] John Rohlf and James Helman. IRIS performer: A high per-
formance multiprocessing toolkit for real–Time 3D graphics.
In SIGGRAPH ’94

[29] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution
point rendering system for large meshes.ACM SIGGRAPH,
2000.

[30] G. Schaufler and W. Sturzlinger. A three dimensional im-
age cache for virtual reality. Computer Graphics Forum,
15(3):C227–C235, 1996.

[31] B. Schneider, P. Borrel, J. Menon, J. Mittleman, and
J. Rossignac. Brush as a walkthrough system for architectural
models. InFifth Eurographics Workshop on Rendering, pages
389–399, July 1994.

[32] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder.
Hierarchical image caching for accelerated walkthroughs of
complex environments. InACM SIGGRAPH1996

[33] E. Shaffer and Michael Garland. Effient adaptive simplifica-
tion of massive meshes. InIEEE Visualization, 2001.

[34] L. Shou, J. Chionh, Z. Huang, Y. Ruan, and K.L. Tan. Walking
through a very large virtual environment in real-time. InProc.
International Conference on Very Large Data Bases, pages
401–410, 2001.

[35] S.-K. Ueng, C. Sikorski, and K.-L. Ma. Out-of-core stream-
line visualization on large unstructured meshes. InIEEE
Transactions on Visualization and Computer Graphics, vol-
ume 3, pages 370–380, 1997.

[36] J.S. Vitter. External memory algorithms and data structures.
In External Memory Algorithms and Visualization (DIMACS
Book Series, American Mathematical Society), 1999.

[37] J. C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time
level-of-detail based rendering for polygonal meshes.IEEE
Trans. Visualizat. Comput. Graph., 3(2):171–183, April 1997.

Administrator
76

