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ABSTRACT 
This paper presents a method to compute a view frustum for a 3D 
object viewed from a given viewpoint, such that the object is 
completely enclosed in the frustum and the final object’s image 
area is also near-maximal in the given 2D rectangular viewing 
region. This optimization can be used to improve the resolution of 
shadow maps and texture maps for projective texture mapping. 
Instead of doing the optimization in 3D space to find a good view 
frustum, our method uses a 2D approach. The basic idea of our 
approach is as follows. First, from the given viewpoint, a sample 
image of the object is generated using a conveniently-computed 
view frustum. A tight 2D bounding quadrilateral is then computed 
to enclose the image of the object. Next, considering the 
projective warp between the bounding quadrilateral and the 
rectangular viewing region, our method applies a technique of 
camera calibration to compute a new view frustum that generates 
an image that covers the viewing region as much as possible. 

1 INTRODUCTION 
In interactive computer graphics rendering, we often need to 
compute a view frustum from a given viewpoint such that a 
selected 3D object or a group of 3D objects is totally inside the 
rendered 2D rectangular image. This kind of view-frustum 
computation is usually needed when generating shadow maps 
[Williams78] from light sources, and images for projective texture 
mapping [Segal92, Hoff98]. 

The easiest way to compute such a view frustum is to pre-
compute a simple 3D bounding volume, such as a bounding 
sphere, around the 3D object, and create a symmetric perspective 
view frustum that encloses the object’s bounding volume. 
However, very often, this view frustum is not enclosing the 3D 
object tightly enough to produce an image of the object that 
covers the 2D rectangular viewing region as much as possible. We 
will refer to the image of the object as the object’s image, and the 
2D rectangular viewing region as the viewport. If the object’s 
image is too small, we are not efficiently utilizing the available 
viewport area to produce a shadow map or projective texture map 
that could have higher-resolution due to a larger image of the 
object. A small image region of the object in a shadow map 
usually results in blocky shadow edges, and similarly, a low-
resolution image region in a texture map can also result in a 
blocky rendered image. 

Other methods increase the object’s image area in the viewport by 
using a tighter 3D bounding volume, such as the 3D convex hull 
of the object [Berg97]. However, this is computationally 
expensive, and there is still a lot of room for improvement by 
manipulating the shape of the view frustum and the orientation of 
the image plane. Figure 1 shows an example. 

This paper presents a method to compute a view frustum for a 3D 
object viewed from a given viewpoint, such that the final object’s 

image is entirely inside the viewport and its area is also near-
maximal. For computational efficiency, our method does not seek 
to compute the optimal view frustum, but to compromise for one 
that is near-optimal.  

Instead of doing the optimization in 3D space to find a good view 
frustum, our method uses a 2D approach. This makes the method 
more efficient and simpler to implement. The basic idea of our 
approach is as follows. First, from the given viewpoint, a sample 
image of the whole object is generated using a conveniently-
computed view frustum. From the sample image, our method uses 
a tight 2D bounding quadrilateral of the image to decide how the 
image could be warped to fill the viewport as much as possible. 
Then by applying a technique of camera calibration from the field 
of computer vision [Faugeras93, Trucco98], the image warping 
information is used to derive a valid view frustum, such that it 
will generate the target image to fill the viewport as much as 
possible. 

Contributions 
One of the main contributions of this work is the recognition of 
the 2D relationship between the images of an object in different 
image planes, and also the relationship between these image 
planes and their view frusta. This allows us to efficiently perform 
the optimization in 2D, and then transform the result into a valid 
frustum. We also introduce the use of a well-studied camera 
calibration technique in computer vision to derive the desired 
view frustum. Another contribution is the introduction of an 
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Figure 1: (a) The symmetric perspective view frustum cannot    
enclose the 3D object tightly enough, therefore, the object’s image 
does not efficiently utilize the viewport area. (b) By manipulating 
the view frustum such that the image plane becomes parallel to 
the larger face of the 3D wall, we can improve the object’s image 
to cover almost the whole viewport. 
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efficient algorithm to compute a near-optimal tight bounding 
quadrilateral enclosing a set of 2D points. 

Paper Outline 
In the next section, we describe how a view frustum is defined in 
the context of the OpenGL API and provide an overview of our 
method. Section 3 describes in detail our algorithm to compute a 
tight bounding quadrilateral enclosing a set of 2D points, and 
Section 4 details the use of a camera calibration technique to 
derive a desired view frustum. We show some of our results in 
Section 5, and discuss some issues related to our method in 
Section 6. Finally, we conclude the paper in Section 7. 

2 OVERVIEW OF METHOD 
Without loss of generality, we will describe our method in the 
context of the OpenGL API [Woo99]. We expect the readers have 
already had experience with the OpenGL API (or similar APIs), 
so OpenGL serves as the common unambiguous specification on 
which our descriptions are based. This allows easier and clearer 
explanation. Moreover, those readers who use OpenGL can 
quickly implement the method without additional modification 
and conversion. 

In OpenGL, defining a view frustum from an arbitrary viewpoint 
requires the definition of two transformations. The first is the view 
transformation, and it transforms points in the world coordinate 
system into the eye coordinate system. The second transformation 
is the projection transformation, and it transforms points in the 
eye coordinate system into the normalized device coordinate 
(NDC) system. 

Given a viewpoint, a 3D object in the world coordinate system, 
and the viewport’s width and height, our objective is to compute a 
valid view frustum (i.e. a view transformation and a projection 
transformation) that maximizes the area of the object’s ima ge in 
the viewport. We provide an overview of our method below. 

Generate Sample Image 
We generate a sample image of the entire object, as seen from the 
viewpoint, using a conveniently-computed view frustum. This 
view frustum can be easily computed by bounding the object with 
a sphere and then creating a symmetric perspective view frustum 
that encloses the sphere. The view transformation and the 
projection transformation that represent the symmetric view 
frustum can be readily obtained from the OpenGL API. 

We do not actually render a 2D image of the object using this 
view frustum. Instead, we use the two transformations and the 
viewport settings to explicitly transform all the 3D vertices of the 
object from the world coordinate system into the 2D window 
coordinate system. Effectively, we project the 3D vertices of the 
object onto their corresponding 2D image points. 

Compute Tight Bounding Quadrilateral 
We compute a tight bounding quadrilateral of the 2D image points 
by first computing a 2D convex hull of the 2D image points, and 
then incrementally decimating the edges of the convex hull until a 
bounding quadrilateral remains. Figure 2 shows an example. 

The most important idea of our method lies in the observation that 
the bounding quadrilateral and the rectangular viewport are 
related only by a projective warp or 2D collineation (see Chapter 
2 of [Faugeras93]). Equally important to know is that this 

projective warp from the bounding quadrilateral to a rectangle can 
be achieved by merely rotating and moving the image plane. 

Section 3 gives more details about our method of computing a 
tight bounding quadrilateral. 

Compute View Frustum 
We want to compute a view frustum whose near and far planes are 
oriented in such a way with respect to the object that the bounding 
quadrilateral is warped into the viewport’s rectangle.  

We first project each corner of the bounding quadrilateral back 
into the 3D world coordinate system as a ray originating from the 
viewpoint. Taking the world coordinates of any 3D point on each 
ray and pairing it with the 2D window coordinates of the 
corresponding corner of the viewport’s rectangle, we get a pair -
correspondence. With four pair-correspondences, one for each 
corner, we are able to use a camera calibration technique to solve 
for the desired view frustum. The details of the computation are 
given in Section 4. 

3 COMPUTING TIGHT BOUNDING 
QUADRILATERAL 

Aggarwal et al. presented an O(n2 log n log k) algorithm to 
compute the smallest convex k-sided polygon to enclose a given 
convex n-sided polygon [Aggarwal85]. For our case of computing 
a convex bounding quadrilateral, k = 4, and the time complexity 
of their algorithm becomes O(n2 log n). To use their algorithm, we 
would first need to compute a 2D convex hull of the 2D image 
points in the window coordinate system. However, if the convex 
hull is complex (n is large), a super-quadratic algorithm is not 
likely to be efficient enough for interactive graphics applications 
in which the viewpoint (or light source’s position) c hanges very 
often. Moreover, the algorithm can be difficult to implement. 

Here, we propose an alternative algorithm to compute a convex 
bounding quadrilateral. The result produced by our algorithm is 
only near-optimal, however the algorithm has time complexity 
O(n log n). 

Our algorithm obtains the convex bounding quadrilateral by 
iteratively eliminating edges from the convex hull using a greedy 
approach until only four edges remain. Suppose the convex hull of 
the 2D image points has n sides, and they are numbered from 0 to 
n – 1. To eliminate an edge i, we need to first make sure that the 

Figure 2: The basic idea of our method. The 3D vertices of the 
object are first projected onto their corresponding 2D image 
points. A 2D convex hull is computed for these image points, and 
it is then incrementally reduced to a quadrilateral. The bounding 
quadrilateral is related to the viewport’s rectangle by a projective 
warp. This warping effect can be achieved by rotating and moving 
the image plane. 
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sum of the interior angles it makes with the two adjacent edges is 
more than 180°. Then, we extend the two adjacent edges towards 
each other to intersect at a point (see Figure 3).  

During each iteration, we choose to eliminate the edge whose 
removal will add the smallest area to the resulting polygon. For 
example, in Figure 3, removing edge i will add the gray-shaded 
area to the resulting polygon. This edge-removal operation is done 
until the resulting polygon becomes a quadrilateral. It can be 
easily proved that for any convex polygon of five or more sides, 
there always exists at least one edge that can be removed (see the 
proof in Appendix). Since the resulting polygon is also a convex 
polygon, by induction, we can always reduce the initial input 
convex hull to a convex quadrilateral. 

Of course, if the initial convex hull is already a quadrilateral, we 
do not need to do anything. If the initial convex hull is a triangle, 
we just create a bounding parallelogram whose diagonal 
corresponds to the longest edge of the triangle, and three of its 
corners coincide with the three corners of the triangle. This 
ensures that the object’s image wi ll occupy half the viewport. 

Complexity Analysis 
If the number of 2D image points is m, then their convex hull can 
be computed in O(m log m) time [Berg97]. Let the number of 
vertices on the convex hull be n. Our algorithm can compute a 
bounding quadrilateral in O(n log n) time. To achieve that, we use 
a heap to keep track of the area that would be added by the 
removal of each edge. After an edge is removed, only the added 
areas for its two neighboring edges need to be updated.  

4 COMPUTING VIEW FRUSTUM 
After we have found a tight bounding quadrilateral, we want to 
compute a view frustum that warps the quadrilateral to the 
viewport’s rectangle as illustrated in Figure 2.  

First, we need to decide to which corner of the viewport’s 
rectangle each quadrilateral corner is to be warped. We have 
chosen to match the longest edge and its opposite edge of the 
quadrilateral with the longer edges of the viewport’s rectangle.  

Using the view transformation and the projection transformation 
of the conveniently-computed view frustum, we inverse-project 
each corner of the bounding quadrilateral back into the 3D world 
coordinate system as a ray originating from the viewpoint. Taking 
the world coordinates of any 3D point on the ray and pairing it 
with the 2D pixel coordinates of the corresponding corner of the 
viewport’s rectangle, we get a pair-correspondence. With four 
pair-correspondences, one for each corner, we are able to use a 
camera calibration technique to solve for the desired view 

frustum. In other words, we are computing a new view 
transformation and a new projection transformation. 

4.1 A Camera Calibration Technique 
For a pinhole camera, which is the camera model used in 
OpenGL, the effect of transforming a 3D point in the world 
coordinate system into a 2D image point in the viewport can be 
described by the following expression: 
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where  

• a, b, cx and cy are collectively called the intrinsic parameters 
of the camera,  

• rij and ti respectively define the rotation and translation of 
the view transformation, and they are called the extrinsic 
parameters of the camera, 

• (Xi, Yi, Zi, 1)T are the homogeneous coordinates of a point in 
the world coordinate system, and 

• the pixel coordinates of the 2D image point are 
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P is a 3 × 4 matrix called a projection matrix. This projection 
matrix is not the same as the OpenGL projection transformation 
mentioned in Section 2. The former maps a 3D point in the world 
coordinate system to 2D pixel coordinates, whereas the latter 
maps a 3D point in the eye coordinate system to a 3D point in the 
NDC. From here onwards, we will refer to a matrix representing 
the latter as an OpenGL projection matrix. 

Since the viewpoint’s position is known, we can first apply a 
translation to the world coordinate system such that the viewpoint 
is now located at the origin. We will refer to this as the shifted 
world coordinate system, and with it, we can simplify (1) to 
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where P is now a 3 × 3 matrix, and (Xi, Yi, Zi)
T are the 3D 

coordinates of a point in the shifted world coordinate system. 

To solve for the intrinsic and extrinsic camera parameters, we will 
first solve for the matrix P, and then decompose P into the 
individual camera parameters. 

4.1.1 Solving for the Projection Matrix 

If we write P as  
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Figure 3: Eliminating edge i. 
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then the pixel coordinates of the ith 2D image point can be written 
as 
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We can rearrange (5) to get  

.0)(

0)(

333231232221

333231131211

=++−++
=++−++

iiiiiii

iiiiiii

ZpYpXpyZpYpXp

ZpYpXpxZpYpXp  (6) 

Because of the divisions ii wu and ii wv  in (5), P can be 
multiplied by any non-zero scalar and (xi, yi) will still remain the 
same. P is said to be defined up to an arbitrary scale factor, and 
has only eight independent entries. Therefore, the four pair-
correspondences we have previously obtained are sufficient to 
solve for P. Note that because of the removal of the translation in 
(3), the 3D point in each pair-correspondence must now be 
translated into the shifted world coordinate system. To prevent 
degeneracy, no three corners of the bounding quadrilateral should 
be collinear. 

With the four pair-correspondences, we can form a homogeneous 
linear system 

0pA =⋅  (7) 
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For the homogeneous system A⋅p = 0, the vector p can be 
computed using SVD (singular value decomposition) related 
techniques as the eigenvector corresponding to the only zero 
eigenvalue of ATA. In other words, if the SVD of A is UDVT, 
then p is the column of V corresponding to the only zero singular 
value of A. For more details about camera calibration, see 
[Trucco98], and for a comprehensive introduction to linear 
algebra and SVD, see [Strang88]. An implementation of SVD can 
be found in [Press93]. 

4.1.2 Computing Camera Parameters 

From the computed projection matrix, we want to express the 
intrinsic and extrinsic parameters as closed-form functions of the 
matrix entries. Since P is defined up to an arbitrary scale factor, 
the computed matrix may differ from the theoretical P by a scale 
factor. We now let Q be the computed matrix. The matrix P can 
be expressed in terms of the parameters as 
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Then, we can write 

PQ λα=  (11) 

where 1±=λ  is the sign of the scale factor, and 0>α  is the 
absolute value of the scale factor. 

We observe that the last row of P corresponds to the last row of 
the rotation matrix. Using the fact that every row of a rotation 
matrix is a unit vector, we can find the absolute value of the scale 
factor as 
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where each ijq is an entry of Q. 

We normalize Q by dividing each of its entries by α. From here 
onwards, Q refers to the normalized matrix and ijq are its 

normalized entries. To help in the following derivations, we first 
define the following 3D vectors: 
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The values of the parameters can be computed as follows: 
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The sign λ affects only the values of rij. It can be determined as 
follows. First, we use the rotation matrix [rij] computed in the 
above procedure to transform the 4 shifted world points in the 
pair-correspondences. Since these 3D points are all in front of the 
camera, their transformed z-coordinates should be negative, 
because the camera is looking in the –z direction in the eye 
coordinate system. If it is not the case, we correct the rij by 
changing their signs. 

4.1.3 Conversion to OpenGL Matrices 

From the camera parameters obtained above, the OpenGL view 
transformation matrix is  
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where (vx, vy, vz)
T is the position of the viewpoint in the world 

coordinate system. 

The OpenGL projection matrix is 
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where W and H are the width and height of the viewport in pixels, 
respectively, and n and f are the distances of the near and far plane 
from the viewpoint, respectively. If n and f cannot be known 
beforehand, a simple and efficient way to compute good values 
for n and f is to transform the bounding sphere of the 3D object 
into the eye coordinate system and compute 
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z
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where oz is the z-coordinate of the center of the sphere in the eye 

coordinate system, and r is the radius of the sphere. 

5 RESULTS 
In Figure 4, we show three example results. The images in the 
leftmost column were generated using symmetric perspective 
view frusta enclosing the bounding spheres of the respective 
objects. The middle column shows the bounding quadrilaterals 
computed using our algorithm described in Section 3. The 
rightmost column shows the images generated using the new 
frusta computed using our method. Note that each object is always 
viewed from the same viewpoint for both the unoptimized and 
optimized view frusta. 

6 DISCUSSION 
In this section, we discuss some issues regarding our method. 

If the viewpoint is dynamic, a new view frustum has to be 
computed for every rendered frame. In the computation of the 2D 
convex hull and the bounding quadrilateral, if the number of 2D 
image points is too large, it may be difficult to render at 
interactive rates. For a static 3D object, we can first pre-compute 

   

   

   

Figure 4: Example results. 
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its 3D convex hull, and project only the 3D vertices of the convex 
hull onto the window coordinate system as 2D image points. This 
will generally reduce the number of 2D points that our algorithm 
needs to work with. If the 3D convex hull is still too complex, we 
can simplify it to reduce its number of faces and vertices. Note 
that the simplified hull should totally contain the original convex 
hull. The 3D convex hull and its simplified version would be 
computed in a pre-processing step. 

Besides the advantage of increasing the resolution of the object’s 
image, our method can also improve the temporal consistency of 
the object’s image resolution from fr ame to frame. If the 3D 
object has a predominantly large face (or a predominant 
silhouette), the image plane of the computed view frustum will 
tend to be oriented with it for many viewpoints. This results in a 
more stable image plane, and therefore more consistent object’s 
image resolution. This benefit is important to projector-based 
displays in which projective texture mapping is used to produce 
perspective-correct imagery for the tracked users [Raskar98]. In 
this application, texture maps are generated from the user’s 
viewpoint, and are then texture-mapped onto the display surfaces 
using projective texture mapping. Excessive changes in texture 
map resolution when the viewpoint moves can cause undesired 
effects in the projected imagery. 

Something we wish we had done is to prove how much worse our 
approximated smallest enclosing quadrilaterals are, compared to 
the truly optimal ones. Such a proof would most likely be 
nontrivial. Since we also did not have an implementation of the 
algorithm described in [Aggarwal85] available to us, we could not 
do any empirical comparisons between our approximations and 
the true minimum areas. However, from manual inspection of our 
results, our algorithm always produced results that are within our 
expectation of being good approximations of the smallest possible 
quadrilaterals. Note that even if the quadrilateral is the smallest 
possible, it still cannot guarantee that the object’s image area will 
be the largest possible. This is because the projective warp does 
not “scale” every part of the quadrilateral uniformly. 

Raskar described a method to append a matrix that represents a 
2D collineation to an OpenGL projection matrix to achieve the 
desired projective warp of the original image [Raskar99]. Though 
such a 2D projective warp preserves collinearity in the 2D image 
plane, it does not preserve collinearity in the 3D NDC. This 
results in incorrect depth interpolation, and therefore, incorrect 
interpolation of surface attributes. Our method can also be used 
for oblique projector rendering on planar surfaces. In this case, we 
usually need to compute the view frustum that warps the 
rectangular viewport to a smaller quadrilateral inside the 
viewport. The results from our method do not have the incorrect 
depth interpolation problem. 

7 CONCLUSION 
We have demonstrated a simple method to compute an efficient 
view frustum for a 3D object viewed from a given viewpoint, such 
that the final object’s image area is near -maximal.  

The recognition of the 2D relationship between object images in 
different image planes, and also the relationship between these 
image planes and their view frusta has allowed us to efficiently 
perform the optimization in 2D, and then transform the result into 
a valid 3D frustum.  

For the 2D optimization, we have introduced a novel and efficient 
algorithm to compute a near-optimal tight bounding quadrilateral 

enclosing a set of 2D points. We have also introduced the use of a 
well-studied camera calibration technique in computer vision to 
derive the desired view frustum. 
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APPENDIX 

Proving that edge elimination is always possible if n >>  4 
An edge i is a candidate for removal if the sum of the two interior 
angles it makes with the two adjacent edges is greater than 180°. 
We want to prove that for any n-sided convex polygon, where 
n > 4, there always exists at least one edge that can be removed.  

Suppose that for every edge, the sum of the two interior angles it 
makes with the two adjacent edges is less than or equal to 180°. 
Then the sum of all the interior angles of the convex polygon is 
less than or equal to 180°n / 2 (the division by 2 accounts for the 
double-counting of each interior angle), which is impossible for 
n > 4 because we know that the sum of all the interior angles of 
the convex polygon should be 180°(n – 2). This means that there 
exists at least an edge such that the sum of the two interior angles 
it makes with the two adjacent edges is greater than 180°. 

 


