
1

View Frustum Optimization
To Maximize Object’s Image Area

Kok-Lim Low Adrian Ilie

Department of Computer Science
University of North Carolina at Chapel Hill

Email: {lowk, adyilie}@cs.unc.edu

ABSTRACT
This paper presents a method to compute a view frustum for a 3D
object viewed from a given viewpoint, such that the object is
completely enclosed in the frustum and the final object’s image
area is also near-maximal in the given 2D rectangular viewing
region. This optimization can be used to improve the resolution of
shadow maps and texture maps for projective texture mapping.
Instead of doing the optimization in 3D space to find a good view
frustum, our method uses a 2D approach. The basic idea of our
approach is as follows. First, from the given viewpoint, a sample
image of the object is generated using a conveniently-computed
view frustum. A tight 2D bounding quadrilateral is then computed
to enclose the image of the object. Next, considering the
projective warp between the bounding quadrilateral and the
rectangular viewing region, our method applies a technique of
camera calibration to compute a new view frustum that generates
an image that covers the viewing region as much as possible.

1 INTRODUCTION
In interactive computer graphics rendering, we often need to
compute a view frustum from a given viewpoint such that a
selected 3D object or a group of 3D objects is totally inside the
rendered 2D rectangular image. This kind of view-frustum
computation is usually needed when generating shadow maps
[Williams78] from light sources, and images for projective texture
mapping [Segal92, Hoff98].

The easiest way to compute such a view frustum is to pre-
compute a simple 3D bounding volume, such as a bounding
sphere, around the 3D object, and create a symmetric perspective
view frustum that encloses the object’s bounding volume.
However, very often, this view frustum is not enclosing the 3D
object tightly enough to produce an image of the object that
covers the 2D rectangular viewing region as much as possible. We
will refer to the image of the object as the object’s image, and the
2D rectangular viewing region as the viewport. If the object’s
image is too small, we are not efficiently utilizing the available
viewport area to produce a shadow map or projective texture map
that could have higher-resolution due to a larger image of the
object. A small image region of the object in a shadow map
usually results in blocky shadow edges, and similarly, a low-
resolution image region in a texture map can also result in a
blocky rendered image.

Other methods increase the object’s image area in the viewport by
using a tighter 3D bounding volume, such as the 3D convex hull
of the object [Berg97]. However, this is computationally
expensive, and there is still a lot of room for improvement by
manipulating the shape of the view frustum and the orientation of
the image plane. Figure 1 shows an example.

This paper presents a method to compute a view frustum for a 3D
object viewed from a given viewpoint, such that the final object’s

image is entirely inside the viewport and its area is also near-
maximal. For computational efficiency, our method does not seek
to compute the optimal view frustum, but to compromise for one
that is near-optimal.

Instead of doing the optimization in 3D space to find a good view
frustum, our method uses a 2D approach. This makes the method
more efficient and simpler to implement. The basic idea of our
approach is as follows. First, from the given viewpoint, a sample
image of the whole object is generated using a conveniently-
computed view frustum. From the sample image, our method uses
a tight 2D bounding quadrilateral of the image to decide how the
image could be warped to fill the viewport as much as possible.
Then by applying a technique of camera calibration from the field
of computer vision [Faugeras93, Trucco98], the image warping
information is used to derive a valid view frustum, such that it
will generate the target image to fill the viewport as much as
possible.

Contributions
One of the main contributions of this work is the recognition of
the 2D relationship between the images of an object in different
image planes, and also the relationship between these image
planes and their view frusta. This allows us to efficiently perform
the optimization in 2D, and then transform the result into a valid
frustum. We also introduce the use of a well-studied camera
calibration technique in computer vision to derive the desired
view frustum. Another contribution is the introduction of an

top view of a
3D wall

image plane
view

frustum

viewport
object’s image

(a) (b)

image plane

Figure 1: (a) The symmetric perspective view frustum cannot
enclose the 3D object tightly enough, therefore, the object’s image
does not efficiently utilize the viewport area. (b) By manipulating
the view frustum such that the image plane becomes parallel to
the larger face of the 3D wall, we can improve the object’s image
to cover almost the whole viewport.

2

efficient algorithm to compute a near-optimal tight bounding
quadrilateral enclosing a set of 2D points.

Paper Outline
In the next section, we describe how a view frustum is defined in
the context of the OpenGL API and provide an overview of our
method. Section 3 describes in detail our algorithm to compute a
tight bounding quadrilateral enclosing a set of 2D points, and
Section 4 details the use of a camera calibration technique to
derive a desired view frustum. We show some of our results in
Section 5, and discuss some issues related to our method in
Section 6. Finally, we conclude the paper in Section 7.

2 OVERVIEW OF METHOD
Without loss of generality, we will describe our method in the
context of the OpenGL API [Woo99]. We expect the readers have
already had experience with the OpenGL API (or similar APIs),
so OpenGL serves as the common unambiguous specification on
which our descriptions are based. This allows easier and clearer
explanation. Moreover, those readers who use OpenGL can
quickly implement the method without additional modification
and conversion.

In OpenGL, defining a view frustum from an arbitrary viewpoint
requires the definition of two transformations. The first is the view
transformation, and it transforms points in the world coordinate
system into the eye coordinate system. The second transformation
is the projection transformation, and it transforms points in the
eye coordinate system into the normalized device coordinate
(NDC) system.

Given a viewpoint, a 3D object in the world coordinate system,
and the viewport’s width and height, our objective is to compute a
valid view frustum (i.e. a view transformation and a projection
transformation) that maximizes the area of the object’s ima ge in
the viewport. We provide an overview of our method below.

Generate Sample Image
We generate a sample image of the entire object, as seen from the
viewpoint, using a conveniently-computed view frustum. This
view frustum can be easily computed by bounding the object with
a sphere and then creating a symmetric perspective view frustum
that encloses the sphere. The view transformation and the
projection transformation that represent the symmetric view
frustum can be readily obtained from the OpenGL API.

We do not actually render a 2D image of the object using this
view frustum. Instead, we use the two transformations and the
viewport settings to explicitly transform all the 3D vertices of the
object from the world coordinate system into the 2D window
coordinate system. Effectively, we project the 3D vertices of the
object onto their corresponding 2D image points.

Compute Tight Bounding Quadrilateral
We compute a tight bounding quadrilateral of the 2D image points
by first computing a 2D convex hull of the 2D image points, and
then incrementally decimating the edges of the convex hull until a
bounding quadrilateral remains. Figure 2 shows an example.

The most important idea of our method lies in the observation that
the bounding quadrilateral and the rectangular viewport are
related only by a projective warp or 2D collineation (see Chapter
2 of [Faugeras93]). Equally important to know is that this

projective warp from the bounding quadrilateral to a rectangle can
be achieved by merely rotating and moving the image plane.

Section 3 gives more details about our method of computing a
tight bounding quadrilateral.

Compute View Frustum
We want to compute a view frustum whose near and far planes are
oriented in such a way with respect to the object that the bounding
quadrilateral is warped into the viewport’s rectangle.

We first project each corner of the bounding quadrilateral back
into the 3D world coordinate system as a ray originating from the
viewpoint. Taking the world coordinates of any 3D point on each
ray and pairing it with the 2D window coordinates of the
corresponding corner of the viewport’s rectangle, we get a pair -
correspondence. With four pair-correspondences, one for each
corner, we are able to use a camera calibration technique to solve
for the desired view frustum. The details of the computation are
given in Section 4.

3 COMPUTING TIGHT BOUNDING
QUADRILATERAL

Aggarwal et al. presented an O(n2 log n log k) algorithm to
compute the smallest convex k-sided polygon to enclose a given
convex n-sided polygon [Aggarwal85]. For our case of computing
a convex bounding quadrilateral, k = 4, and the time complexity
of their algorithm becomes O(n2 log n). To use their algorithm, we
would first need to compute a 2D convex hull of the 2D image
points in the window coordinate system. However, if the convex
hull is complex (n is large), a super-quadratic algorithm is not
likely to be efficient enough for interactive graphics applications
in which the viewpoint (or light source’s position) c hanges very
often. Moreover, the algorithm can be difficult to implement.

Here, we propose an alternative algorithm to compute a convex
bounding quadrilateral. The result produced by our algorithm is
only near-optimal, however the algorithm has time complexity
O(n log n).

Our algorithm obtains the convex bounding quadrilateral by
iteratively eliminating edges from the convex hull using a greedy
approach until only four edges remain. Suppose the convex hull of
the 2D image points has n sides, and they are numbered from 0 to
n – 1. To eliminate an edge i, we need to first make sure that the

Figure 2: The basic idea of our method. The 3D vertices of the
object are first projected onto their corresponding 2D image
points. A 2D convex hull is computed for these image points, and
it is then incrementally reduced to a quadrilateral. The bounding
quadrilateral is related to the viewport’s rectangle by a projective
warp. This warping effect can be achieved by rotating and moving
the image plane.

convex hull

viewport

2D image
points

bounding
quadrilateral

3

sum of the interior angles it makes with the two adjacent edges is
more than 180°. Then, we extend the two adjacent edges towards
each other to intersect at a point (see Figure 3).

During each iteration, we choose to eliminate the edge whose
removal will add the smallest area to the resulting polygon. For
example, in Figure 3, removing edge i will add the gray-shaded
area to the resulting polygon. This edge-removal operation is done
until the resulting polygon becomes a quadrilateral. It can be
easily proved that for any convex polygon of five or more sides,
there always exists at least one edge that can be removed (see the
proof in Appendix). Since the resulting polygon is also a convex
polygon, by induction, we can always reduce the initial input
convex hull to a convex quadrilateral.

Of course, if the initial convex hull is already a quadrilateral, we
do not need to do anything. If the initial convex hull is a triangle,
we just create a bounding parallelogram whose diagonal
corresponds to the longest edge of the triangle, and three of its
corners coincide with the three corners of the triangle. This
ensures that the object’s image wi ll occupy half the viewport.

Complexity Analysis
If the number of 2D image points is m, then their convex hull can
be computed in O(m log m) time [Berg97]. Let the number of
vertices on the convex hull be n. Our algorithm can compute a
bounding quadrilateral in O(n log n) time. To achieve that, we use
a heap to keep track of the area that would be added by the
removal of each edge. After an edge is removed, only the added
areas for its two neighboring edges need to be updated.

4 COMPUTING VIEW FRUSTUM
After we have found a tight bounding quadrilateral, we want to
compute a view frustum that warps the quadrilateral to the
viewport’s rectangle as illustrated in Figure 2.

First, we need to decide to which corner of the viewport’s
rectangle each quadrilateral corner is to be warped. We have
chosen to match the longest edge and its opposite edge of the
quadrilateral with the longer edges of the viewport’s rectangle.

Using the view transformation and the projection transformation
of the conveniently-computed view frustum, we inverse-project
each corner of the bounding quadrilateral back into the 3D world
coordinate system as a ray originating from the viewpoint. Taking
the world coordinates of any 3D point on the ray and pairing it
with the 2D pixel coordinates of the corresponding corner of the
viewport’s rectangle, we get a pair-correspondence. With four
pair-correspondences, one for each corner, we are able to use a
camera calibration technique to solve for the desired view

frustum. In other words, we are computing a new view
transformation and a new projection transformation.

4.1 A Camera Calibration Technique
For a pinhole camera, which is the camera model used in
OpenGL, the effect of transforming a 3D point in the world
coordinate system into a 2D image point in the viewport can be
described by the following expression:



















⋅















⋅
















=



















⋅=
















1
100

0
0

1 3333231

2232221

1131211

i

i

i

y

x

i

i

i

i

i

i

Z

Y
X

trrr
trrr
trrr

cb
ca

Z

Y
X

w
v
u

P

(1)

where

• a, b, cx and cy are collectively called the intrinsic parameters
of the camera,

• rij and ti respectively define the rotation and translation of
the view transformation, and they are called the extrinsic
parameters of the camera,

• (Xi, Yi, Zi, 1)T are the homogeneous coordinates of a point in
the world coordinate system, and

• the pixel coordinates of the 2D image point are







=






ii

ii

i

i

wv
wu

y
x . (2)

P is a 3 × 4 matrix called a projection matrix. This projection
matrix is not the same as the OpenGL projection transformation
mentioned in Section 2. The former maps a 3D point in the world
coordinate system to 2D pixel coordinates, whereas the latter
maps a 3D point in the eye coordinate system to a 3D point in the
NDC. From here onwards, we will refer to a matrix representing
the latter as an OpenGL projection matrix.

Since the viewpoint’s position is known, we can first apply a
translation to the world coordinate system such that the viewpoint
is now located at the origin. We will refer to this as the shifted
world coordinate system, and with it, we can simplify (1) to
















⋅
















⋅
















=
















⋅=

















i

i

i

y

x

i

i

i

i

i

i

Z
Y
X

rrr
rrr
rrr

cb
ca

Z
Y
X

w
v
u

333231

232221

131211

100
0

0
P

(3)

where P is now a 3 × 3 matrix, and (Xi, Yi, Zi)
T are the 3D

coordinates of a point in the shifted world coordinate system.

To solve for the intrinsic and extrinsic camera parameters, we will
first solve for the matrix P, and then decompose P into the
individual camera parameters.

4.1.1 Solving for the Projection Matrix

If we write P as
















=

333231

232221

131211

ppp

ppp
ppp

P
(4)

Figure 3: Eliminating edge i.

. . .

i+1

. . .

i–1

vi–1

u

vi+2

. . .

i+1

. . .

i–1

i

vi

vi–1

vi+1

vi+2

4

then the pixel coordinates of the ith 2D image point can be written
as

.
333231

232221

333231

131211

iii

iii

i

i
i

iii

iii

i

i
i

ZpYpXp
ZpYpXp

w
v

y

ZpYpXp
ZpYpXp

w
u

x

++
++

==

++
++

==

(5)

We can rearrange (5) to get

.0)(

0)(

333231232221

333231131211

=++−++
=++−++

iiiiiii

iiiiiii

ZpYpXpyZpYpXp

ZpYpXpxZpYpXp (6)

Because of the divisions ii wu and ii wv in (5), P can be
multiplied by any non-zero scalar and (xi, yi) will still remain the
same. P is said to be defined up to an arbitrary scale factor, and
has only eight independent entries. Therefore, the four pair-
correspondences we have previously obtained are sufficient to
solve for P. Note that because of the removal of the translation in
(3), the 3D point in each pair-correspondence must now be
translated into the shifted world coordinate system. To prevent
degeneracy, no three corners of the bounding quadrilateral should
be collinear.

With the four pair-correspondences, we can form a homogeneous
linear system

0pA =⋅ (7)

where

()T
333231232221131211 ,,,,,,,, ppppppppp=p (8)

and

































−−−
−−−
−−−
−−−
−−−
−−−
−−−
−−−

=

444444444

444444444

333333333

333333333

222222222

222222222

111111111

111111111

000
000

000
000

000
000

000
000

ZyYyXyZYX
ZxYxXxZYX
ZyYyXyZYX

ZxYxXxZYX
ZyYyXyZYX
ZxYxXxZYX

ZyYyXyZYX
ZxYxXxZYX

A

(9)

For the homogeneous system A⋅p = 0, the vector p can be
computed using SVD (singular value decomposition) related
techniques as the eigenvector corresponding to the only zero
eigenvalue of ATA. In other words, if the SVD of A is UDVT,
then p is the column of V corresponding to the only zero singular
value of A. For more details about camera calibration, see
[Trucco98], and for a comprehensive introduction to linear
algebra and SVD, see [Strang88]. An implementation of SVD can
be found in [Press93].

4.1.2 Computing Camera Parameters

From the computed projection matrix, we want to express the
intrinsic and extrinsic parameters as closed-form functions of the
matrix entries. Since P is defined up to an arbitrary scale factor,
the computed matrix may differ from the theoretical P by a scale
factor. We now let Q be the computed matrix. The matrix P can
be expressed in terms of the parameters as
















+++
+++

=

333231

332332223121

331332123111

rrr
rcbrrcbrrcbr
rcarrcarrcar

yyy

xxx

P .
(10)

Then, we can write

PQ λα= (11)

where 1±=λ is the sign of the scale factor, and 0>α is the
absolute value of the scale factor.

We observe that the last row of P corresponds to the last row of
the rotation matrix. Using the fact that every row of a rotation
matrix is a unit vector, we can find the absolute value of the scale
factor as

2
33

2
32

2
31

2
33

2
32

2
31 qqqrrr ++=++= αα (12)

where each ijq is an entry of Q.

We normalize Q by dividing each of its entries by α. From here
onwards, Q refers to the normalized matrix and ijq are its

normalized entries. To help in the following derivations, we first
define the following 3D vectors:

()
()
() .,,

,,,

,,,

T
3332313

T
2322212

T
1312111

qqq

qqq

qqq

=

=

=

q

q

q
 (13)

The values of the parameters can be computed as follows:

() ()
() ()
() .,,

,,,

,,,

,

,

,

,

3
T

333231

32
T

232221

31
T

131211

2
2

T
2

2
1

T
1

3
T
2

3
T
1

q

qq

qq

qq

qq

qq

qq

=

−=

−=

−−=

−−=

=

=

rrr

bcrrr

acrrr

cb

ca

c

c

y

x

y

x

y

x

(14)

The sign λ affects only the values of rij. It can be determined as
follows. First, we use the rotation matrix [rij] computed in the
above procedure to transform the 4 shifted world points in the
pair-correspondences. Since these 3D points are all in front of the
camera, their transformed z-coordinates should be negative,
because the camera is looking in the –z direction in the eye
coordinate system. If it is not the case, we correct the rij by
changing their signs.

4.1.3 Conversion to OpenGL Matrices

From the camera parameters obtained above, the OpenGL view
transformation matrix is



















++
++
++

=

1000
)(
)(
)(

333231333231

232221232221

131211131211

MODELVIEW
zyx

zyx

zyx

vrvrvrrrr

vrvrvrrrr
vrvrvrrrr

M
,

(15)

5

where (vx, vy, vz)
T is the position of the viewpoint in the world

coordinate system.

The OpenGL projection matrix is

























−
−

−
−
+−

−−

−−

=

0100

2)(
00

0
2

1
2

0

0
2

10
2

PROJECTION

nf
fn

nf
nf

H

c

H
b

W
c

W
a

y

x

M
,

(16)

where W and H are the width and height of the viewport in pixels,
respectively, and n and f are the distances of the near and far plane
from the viewpoint, respectively. If n and f cannot be known
beforehand, a simple and efficient way to compute good values
for n and f is to transform the bounding sphere of the 3D object
into the eye coordinate system and compute

,
,
rof

ron

z

z

+−=
−−= (17)

where oz is the z-coordinate of the center of the sphere in the eye

coordinate system, and r is the radius of the sphere.

5 RESULTS
In Figure 4, we show three example results. The images in the
leftmost column were generated using symmetric perspective
view frusta enclosing the bounding spheres of the respective
objects. The middle column shows the bounding quadrilaterals
computed using our algorithm described in Section 3. The
rightmost column shows the images generated using the new
frusta computed using our method. Note that each object is always
viewed from the same viewpoint for both the unoptimized and
optimized view frusta.

6 DISCUSSION
In this section, we discuss some issues regarding our method.

If the viewpoint is dynamic, a new view frustum has to be
computed for every rendered frame. In the computation of the 2D
convex hull and the bounding quadrilateral, if the number of 2D
image points is too large, it may be difficult to render at
interactive rates. For a static 3D object, we can first pre-compute

Figure 4: Example results.

6

its 3D convex hull, and project only the 3D vertices of the convex
hull onto the window coordinate system as 2D image points. This
will generally reduce the number of 2D points that our algorithm
needs to work with. If the 3D convex hull is still too complex, we
can simplify it to reduce its number of faces and vertices. Note
that the simplified hull should totally contain the original convex
hull. The 3D convex hull and its simplified version would be
computed in a pre-processing step.

Besides the advantage of increasing the resolution of the object’s
image, our method can also improve the temporal consistency of
the object’s image resolution from fr ame to frame. If the 3D
object has a predominantly large face (or a predominant
silhouette), the image plane of the computed view frustum will
tend to be oriented with it for many viewpoints. This results in a
more stable image plane, and therefore more consistent object’s
image resolution. This benefit is important to projector-based
displays in which projective texture mapping is used to produce
perspective-correct imagery for the tracked users [Raskar98]. In
this application, texture maps are generated from the user’s
viewpoint, and are then texture-mapped onto the display surfaces
using projective texture mapping. Excessive changes in texture
map resolution when the viewpoint moves can cause undesired
effects in the projected imagery.

Something we wish we had done is to prove how much worse our
approximated smallest enclosing quadrilaterals are, compared to
the truly optimal ones. Such a proof would most likely be
nontrivial. Since we also did not have an implementation of the
algorithm described in [Aggarwal85] available to us, we could not
do any empirical comparisons between our approximations and
the true minimum areas. However, from manual inspection of our
results, our algorithm always produced results that are within our
expectation of being good approximations of the smallest possible
quadrilaterals. Note that even if the quadrilateral is the smallest
possible, it still cannot guarantee that the object’s image area will
be the largest possible. This is because the projective warp does
not “scale” every part of the quadrilateral uniformly.

Raskar described a method to append a matrix that represents a
2D collineation to an OpenGL projection matrix to achieve the
desired projective warp of the original image [Raskar99]. Though
such a 2D projective warp preserves collinearity in the 2D image
plane, it does not preserve collinearity in the 3D NDC. This
results in incorrect depth interpolation, and therefore, incorrect
interpolation of surface attributes. Our method can also be used
for oblique projector rendering on planar surfaces. In this case, we
usually need to compute the view frustum that warps the
rectangular viewport to a smaller quadrilateral inside the
viewport. The results from our method do not have the incorrect
depth interpolation problem.

7 CONCLUSION
We have demonstrated a simple method to compute an efficient
view frustum for a 3D object viewed from a given viewpoint, such
that the final object’s image area is near -maximal.

The recognition of the 2D relationship between object images in
different image planes, and also the relationship between these
image planes and their view frusta has allowed us to efficiently
perform the optimization in 2D, and then transform the result into
a valid 3D frustum.

For the 2D optimization, we have introduced a novel and efficient
algorithm to compute a near-optimal tight bounding quadrilateral

enclosing a set of 2D points. We have also introduced the use of a
well-studied camera calibration technique in computer vision to
derive the desired view frustum.

ACKNOWLEDGEMENTS
We wish to thank Jack Snoeyink for referring us to the previous
work on minimal enclosing polygons, as well as to Anselmo
Lastra and Greg Welch for their many useful suggestions.

Support for this research comes from NSF ITR grant “Electronic
Books for the Tele-immersion Age” and NSF Cooperative
Agreement no. ASC-8920219: “NSF Science and Technology
Center for Computer Graphics and Scientific Visualization.”

REFERENCES
[Aggarwal85] Alok Aggarwal, J. S. Chang, Chee K. Yap.

Minimum Area Circumscribing Polygons. The
Visual Computer: International Journal of
Graphics, 1:112–117, 1985.

[Berg97] Mark de Berg, Marc van Kreveld, Mark Overmars
Otfried Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag,
1997.

[Faugeras93] Olivier Faugeras. Three-Dimensional Computer
Vision. MIT Press, 1993.

[Foley90] James D. Foley, Andries van Dam, Steven K.
Feiner and John F. Hughes. Computer Graphics:
Principles and Practice, Second Edition. Addison
Wesley, 1990.

[Hoff98] Kenneth E. Hoff. Understanding Projective
Textures. http://www.cs.unc.edu/~hoff/techrep/
projtextures.html, 1998.

[Press93] William H. Press, Saul A. Teukolsky, William T.
Vetterling, Brian P. Flannery. Numerical Recipes
in C: The Art of Scientific Computing, Second
Edition. Cambridge University Press, January
1993.

[Raskar98] Ramesh Raskar, Matt Cutts, Greg Welch,
Wolfgang Stuerzlinger. Efficient Image Generation
for Multiprojector and Multisurface Display
Surfaces. Rendering Techniques ’98, proceedings
of the 9th Eurographics Workshop on Rendering,
June 1998.

[Raskar99] Ramesh Raskar. Oblique Projector Rendering on
Planar Surfaces for a Tracked User. SIGGRAPH
Sketch, 1999. http://www.cs.unc.edu/~raskar/
Oblique/oblique.pdf

[Segal92] Mark Segal, Carl Korobkin, Rolf van Widenfelt,
Jim Foran, Paul E. Haeberli. Fast Shadows and
Lighting Effects Using Texture Mapping.
SIGGRAPH 92 Conference Proceedings, Annual
Conference Series, ACM SIGGRAPH, Addison
Wesley, vol. 26, pp. 249–252, July 1992.

[Strang88] Gilbert Strang. Linear Algebra and Its
Applications, Third Edition (1988). International
Thomson Publishing.

7

[Trucco98] Emanuele Trucco and Allessandro Verri.
Introductory Techniques for 3-D Computer Vision.
Prentice Hall, 1998.

[Williams78] Lance Williams. Casting Curved Shadows on
Curved Surfaces. Proceedings of SIGGRAPH 78.
In Computer Graphics, 12(3):270–274, ACM
SIGGRAPH, August 1978.

[Woo99] Mason Woo, Jackie Neider, Tom Davis, Dave
Shreiner (OpenGL Architecture Review Board).
OpenGL Programming Guide, Third Edition: The
Official Guide to Learning OpenGL, Version 1.2.
Addison Wesley, 1999.

APPENDIX

Proving that edge elimination is always possible if n >> 4
An edge i is a candidate for removal if the sum of the two interior
angles it makes with the two adjacent edges is greater than 180°.
We want to prove that for any n-sided convex polygon, where
n > 4, there always exists at least one edge that can be removed.

Suppose that for every edge, the sum of the two interior angles it
makes with the two adjacent edges is less than or equal to 180°.
Then the sum of all the interior angles of the convex polygon is
less than or equal to 180°n / 2 (the division by 2 accounts for the
double-counting of each interior angle), which is impossible for
n > 4 because we know that the sum of all the interior angles of
the convex polygon should be 180°(n – 2). This means that there
exists at least an edge such that the sum of the two interior angles
it makes with the two adjacent edges is greater than 180°.

