
1

Viewpoint Calibration With Respect To A Tracker
Kok-Lim Low

Department of Computer Science
University of North Carolina at Chapel Hill

Email: lowk@cs.unc.edu

March 18, 2002

1 INTRODUCTION
In many virtual reality (VR) and augmented reality (AR)
applications, view-dependent images of the virtual worlds are
often displayed for the users. These images can be displayed on
computer monitors, head-mounted displays, or projected by
projectors onto some surfaces. In order to produce perspective-
correct images as viewed by a user, the positions of the user’s
eyes must be known when generating the images. A way to get
the positions of the eyes (viewpoints) is to use a tracking device.

A tracking system typically consists of a tracker and one or more
tracker targets. The tracker is installed in a fixed location in the
physical space, and defines a tracker coordinate frame. For the
purpose of measuring the positions of the eyes, a tracker target is
usually rigidly attached to the user’s head (see Figure 1). When
the tracker target moves together with the user’s head, the
tracking system constantly keeps track of the target’s pose
(position and orientation)† with respect to the tracker coordinate
frame. Each pose tells how the target’s local coordinate frame
(target coordinate frame) is positioned relative to the tracker
coordinate frame. Note that the eyes’ positions are always
constant with respect to the target coordinate frame, therefore, to
determine the eyes’ positions in the tracker coordinate frame, we
can first determine the constant positions of the eyes with respect

† A 6-DOF (degrees of freedom) tracking system provides both position
and orientation of the target, while a 3-DOF tracking system usually
provides only the position.

to the target coordinate frame. Then, we can always use the
target’s current pose in the tracker coordinate frame to express the
eyes’ positions with respect to the tracker coordinate frame.

This article explains a method to calibrate the viewpoints with
respect to a tracker—to find the eyes’ positions in the target
coordinate frame.

2 VIEWPOINT CALIBRATION
The calibration of each viewpoint consists of two steps. The first
step involves some physical procedures to collect the necessary
data from the tracking system. These data represent at least two
lines in the target coordinate frame, and these lines are supposed
to intersect at the viewpoint. They are then fed to the second step
to compute an estimate of the viewpoint’s position.

Since the calibration steps are exactly the same for both eyes,
from here onwards, we will describe the calibration of only the
right eye.

2.1 Data Collection
We want to collect data of at least two lines in the target
coordinate frame that are supposed to intersect at the right eye.
We begin by physically marking two points in the space within
the tracking range of the tracker. Let these two points be P and Q
(see Figure 1), and they are preferably more than 6 feet apart. One
of the two points, say P, should be at about eye level, and there
should be a clear line of sight from P to Q.

Next, we measure the positions of P and Q with respect to the
tracker coordinate frame. This usually can be done by using a
pointing device that is attached with a tracker target. Let pT and qT
be the positions of P and Q with respect to the tracker coordinate
frame.

Next, we attach a tracker target firmly to the user’s head. The user
then positions his right eye near point P (preferably within a foot)
and tries to line-up points P and Q, as shown in Figure 1. When P
and Q are lined-up, the pose of the target with respect to the
tracker coordinate frame is recorded. At this very moment, P and
Q actually form a line that passes through the right viewpoint.
Since we already know pT and qT (the positions of P and Q with
respect to the tracker coordinate frame), and we also know the
pose of the target at that moment, we can now express the
positions of P and Q in the target coordinate frame, as p1 and q1,
respectively. More specifically, we use the target’s pose to
transform pT and qT to get p1 and q1, respectively. Even though, a
moment later, the user might move his right eye away from the
line formed by P and Q, p1 and q1 still remain the same and still
form a line that passes through the right eye in the target
coordinate frame. You can imagine that the line passing through
p1 and q1 has become rigidly “attached” to the target coordinate

Figure 1: A tracker target is rigidly mounted on a user’s head.
Our objective is to find the positions of the user’s eyes with
respect to the target coordinate frame. P and Q are two fixed
points in the physical space and their positions with respect to the
tracker coordinate frame are known. This diagram is not drawn to
scale.

Tracker
Target

Target
Coordinate

Frame

Headband

Fixed Point P

Fixed Point Q

2

frame, and will always pass through the right eye no matter how
the user moves. Up to here, we say we have captured the first line
of sight passing through p1 and q1.

In order to find the position of the right eye in the target
coordinate frame, we need to capture at least another line of sight,
so that its intersection with the first can be used to determine the
viewpoint’s position. To do this, the user is asked to line -up P and
Q again, but with a different head orientation from the first time.
This requires the user to roll his right eyeball to another direction‡.
The new pose of the tracker target at that moment is recorded and
used to transformed pT and qT into the target coordinate frame, as
p2 and q2, respectively. p2 and q2 represent the second line of
sight.

We can repeat the above procedure to capture additional lines of
sight. In practice, because of measurement errors, these captured
lines of sight might not pass through the viewpoint exactly, and
they might not intersect one another at all. Additional lines help to
improve the accuracy of the estimate of the viewpoint’s position.

2.2 Solution Computation
In this section, we will look at two ways to estimate the
viewpoint’s position in the target coordinate frame. The first way
considers only two lines of sight, and the second way can
accommodate the more general case of two or more lines of sight.

2.2.1 Two Lines of Sight

When only two lines of sight are captured, the basic idea to find
the viewpoint’s position is to solve for the intersection of the two
lines. However, measurement errors can produce two lines of
sight that do not intersect with each other at all. In this case, we
can look for the points on the lines of sight at which the two lines
are closest. Two lines of sight, l1 and l2, are shown in Figure 2.
The two lines are closest to each other at points r1 and r2 on l1 and
l2, respectively. We will use the midpoint, m, between r1 and r2 as
an estimate for the viewpoint position.

To find m, we have to first find r1 and r2. We start by letting u1 be
the vector from q1 to p1, and u2 be the vector from q2 to p2:

‡ We are assuming that the position of the center of projection of the eye
does not change significantly when the eyeball rolls.

222

111

qpu
qpu

−=
−= (1)

Let t1 and t2 be two scalars. We can express r1 and r2 as follows:

2222

1111

uqr
uqr

t

t

+=
+= (2)

Our objective is to solve for t1 and t2, so that we can compute r1
and r2. Observing that the line passing through r1 and r2 is
perpendicular to both l1 and l2, we can construct the following two
constraints:

0)(
0)(

212

112

=•−
=•−

urr
urr (3)

where • is the dot product operator.

By substituting (2) into (3), we get the following equations:

2122222211

1112212111

)()(
)()(

uququuuu
uququuuu
•−•=•−•

•−•=•−•
tt

tt (4)

After solving the simultaneous linear equations in (4) for t1 and t2,
we can compute r1 and r2 in (2). The midpoint between them is
just

)(212
1 rrm += . (5)

Therefore, the position m is the estimate of the right viewpoint’s
position in the target coordinate frame.

2.2.2 n Lines of Sight

In this case, we will compute the point that has the shortest total
distance to all the n lines of sight. First, let li be the ith line of
sight, passing through the points pi and qi, where 1 ≤ i ≤ n. We
further let pi = (pix, piy, piz)

T, qi = (qix, qiy, qiz)
T, and ui =

(uix, uiy, uiz)
T = pi – qi. Let m = (mx, my, mz)

T be the point that has
the shortest total distance to all the n lines of sight.

Suppose all the lines of sight intersect exactly at the common
point m, then the following is true for all 1 ≤ i ≤ n:

iiit qum =+ (6)

where each ti is some scalar whose value is yet to be determined.

By combining (6) for all 1 ≤ i ≤ n, we can write them in the form
of Ax = b as

=

nz

ny

nx

z

y

x

z

y

x

n

z

y

x

nz

ny

nx

z

y

x

z

y

x

q
q

q

q

q
q
q

q
q

t

t

t
m
m

m

u
u

u

u

u
u

u

u
u

�
�

�

�

�

�������

�

�

�

�

�

�

2

2

2

1

1

1

2

1
2

2

2

1

1

1

00100
00010
00001

00100
00010
00001
00100
00010
00001

(7)

Figure 2: Estimating the intersection of two lines of sight. The
two lines of sight do not actually intersect, so we find the points
on the lines at which the two lines are closest, and use the
midpoint between these two points as an estimate of the
viewpoint’s position. This diagram is not drawn to scale.

q2

p2

q1

p1

r2

r1

m

l1

l2

3

where A is the 3n × (n + 3) matrix, x is the (n + 3) × 1 column
vector, and b is the 3n × 1 column vector.

In practice, because of errors in the measurements, Ax = b is
almost always an inconsistent system, i.e. b is not in the range of
A. Generally, the columns of A are independent, therefore A has a
rank of n + 3. So, the least squares solution of Ax = b is just

() bAAAx T1T −
= .

ATA is invertible because it is a (n + 3) × (n + 3) matrix and it has
the same rank as A. For more information about linear least
squares solution, see [1].

The last step of the calibration is just to extract mx, my, and mz
from x . m = (mx, my, mz)

T is the estimate of the right viewpoint’s
position with respect to the target coordinate frame.

Using MATLAB [2], the least squares solution x can be
computed as follows:

x = A \ b

provided A and b have already been set up as in (7).

REFERENCES
[1] Gilbert Strang. Linear Algebra and Its Applications, Third

Edition (1988). International Thomson Publishing.

[2] MATLAB. See http://www.mathworks.com/

