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1 INTRODUCTION 
The HiBall wand is an elongated hard plastic that can be attached 
rigidly to the bottom of a HiBall [1, 2, 3] (see Figure 1). The other 
end of the wand is a moderately-sharp metal tip. In the HMD Lab 
at UNC-Chapel Hill, it is a convenient device for measuring the 
3D position of any point in a space where the HiBall can be 
tracked by an optical ceiling tracker. 

When a HiBall is being tracked by a ceiling tracker, its poses 
(orientations and positions) within the fixed ceiling coordinate 
frame are known, and can be obtained from the ceiling tracker 
system. Each pose tells how the HiBall’s local coordinate frame 
is positioned relative to the ceiling coordinate frame. 

To use the tip of the wand to measure the 3D position of a point 
with respect to the ceiling coordinate frame, we first need to know 
the tip’s 3D position in the HiBall’s local coordinate frame. If the 
tip’s position in the HiBall coordinate frame is known, we can 
always use the HiBall’s current pose in the ceiling coordinate 
frame to express the tip’s position with respect to the ceiling 
coordinate frame. 

This article explains a method to calibrate the wand—to find the 
tip’s position in the HiBall coordinate frame. 

2 WAND CALIBRATION 
The calibration consists of two steps. The first step collects the 
necessary data, and the second step computes the result using the 
collected data. 

2.1 Data Collection 
With the HiBall attached to the wand, we place the tip of the wand 
at a fixed point, P, on a firm and stable surface within the tracking 
range of the ceiling tracker. While always keeping the tip fixed at 
P, we slowly rotate the wand about its tip (see Figure 1). While 
rotating the wand, the pose of the HiBall is continuously acquired 
from the tracker system, and recorded. 

We need to obtain at least two different poses of the HiBall (the 
next section explains why). Moreover, it is desirable to have poses 
that are very different, which can be obtained by rotating the wand 
by a large angle. 

Each recorded pose of the HiBall is actually made up of a rotation 
Ri and a translation Ti that transform the ceiling coordinate frame 
into the HiBall coordinate frame. In other words, Ri and Ti 
transform a point’s position in the HiBall coordinate frame into a 
position in the ceiling coordinate frame. 

2.2 Solution Computation 
The crucial observation necessary to solve for the tip’s position in 
the HiBall coordinate frame is that when the wand is being rotated 
about its tip fixed at point P, the point P always has a constant 3D 
position in the HiBall coordinate frame and also has another 
(possibly the same) constant 3D position in the ceiling coordinate 
frame. 

Let (xH, yH, zH)T and (xC, yC, zC)T be the position of P in the HiBall 
and ceiling coordinate frames, respectively. Both (xH, yH, zH)T and 
(xC, yC, zC)T are unknown, but (xH, yH, zH)T is the one we are 
interested in solving. Next, for each pose Ri and Ti, we can write 
the following equation: 
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(EQ-1) 

where Ri is a 3 × 3 rotation matrix and Ti is a 3 × 1 column 
vector. We can expand EQ-1 to get 
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(EQ-2) 

By doing the matrix multiplication, we get the following three 
equations: 

Figure 1: Calibrating the HiBall wand. 
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(EQ-3) 

After rearranging, we have 
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(EQ-4) 

Next, we rewrite EQ-4 as matrix multiplication 
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(EQ-5) 

EQ-5 is in the form Ax = b, where A and b are known. Our task 
now is to solve for x. However, since x has 6 unknowns and A has 
only 3 rows (equations), we do not have enough constraints to 
solve for x yet. We need to have at least 6 rows in A (provided 
they are all independent). Since each pose of the HiBall provides 
3 rows in A, we need at least 2 poses to get at least 6 rows in A. 

Since there are errors in the poses obtained from the tracker 
system, we would like to use as many poses as possible to 
minimize the error in our solution of x. Let n ≥ 2 be the number of 
poses collected. Then, by writing them in the form of EQ-5, and 
combining them, we have 
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(EQ-6) 

which we will refer to as 

Ax = b (EQ-7) 

Because of errors in the measurements, Ax = b is almost always 
an inconsistent system, i.e. b is not in the range of A. Generally, 
the columns of A are independent, therefore A has a rank of 6. So, 
the least squares solution (see Appendix) of Ax = b is just  

( ) bAAAx T1T −
= .  

ATA is invertible because it is a 6 × 6 matrix and it has the same 
rank as A. 

The last step of the calibration is just to extract xH, yH, and zH from 
x . (xH, yH, zH)T is the 3D position of the tip in the HiBall 
coordinate frame. 

Using MATLAB [5], the least squares solution x  can be 
computed as follows: 

x = A \ b 

provided A and b have already been set up as in EQ-6. 
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APPENDIX 
Least Squares Solution 

The column vectors in A span a 6-dimensional subspace S, 
embedded in a 3n-dimensional space. In order for Ax = b to have 
a unique solution, the 3n-dimensional vector b must lie in the 
subspace S. However, errors in measurements usually cause b to 
lie outside S. In this case, we call Ax = b an inconsistent system, 
and there is no solution x such that Ax = b. In spite of this, we do 
not just give up here. Inconsistent equations arise in practice and 
have to be solved in some way. 

One way we can do in the case when b lies outside S is to find a 
point p, such that it is in S and it is the point in S that is closest to 
b. To find the point p, we can project b onto S. To help you 
understand, you can imagine that S is a 2-dimensional plane 
embedded in a 3-dimensional space, and b is a 3-dimensional 
point not on the plane. Then if you project b onto the plane S, you 
get p, which is the point on the plane closest to b. 

For the system in EQ-7, p can be computed from b as in 

( ) bAAAAp T1T −
= . (EQ-A) 

However, instead of p, we are more interested in solving for x  
such that pxA = . By comparing pxA =  with EQ-A, we can see 
that  

( ) bAAAx T1T −
= ,  

which is what we call the least squares solution of Ax = b. It is 
called the least squares solution because 2  − bxA  is the 

minimum of all the 6Rx∈ . 

You can refer to [4] for more details. 

 


