
 1

Technical Report TR02-017

Department of Computer Science

Univ of North Carolina at Chapel Hill

An Extensible Object Tracking Architecture for
Hyperlinking in Real-time and Stored Video Streams

Jason McC. Smith and David Stotts

Dept of Computer Science
Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

April 24, 2002

 2

An Extensible Object Tracking Architecture for
Hyperlinking in Real-time and Stored Video Streams

Jason McC. Smith and David Stotts

Dept. of Computer Science
Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175 USA
{smithja,stotts}@cs.unc.edu

ABSTRACT
Video is not as richly-used a component of hypermedia
documents as text, due to the difficulty of automatically treating
objects in video frames as identifiable, linkable content. Rather,
video tends to be manipulated as frames of pixels with no further
subdivisions, or tedious manual markup is used to outline intra-
frame link anchors. We describe OvalTine, a system for tracking
objects in video streams so that hypermedia link anchors can be
associated with objects in the frames without manual markup. We
show how OvalTine can be used to provide hyperlinked structure
to real-time video streams (such as teleconferences), as well as to
mark up stored video (digital libraries) with hyperlinks in
automated fashion. We also discuss the software architecture of
OvalTine, which is designed to allow multiple tracker algorithms
to be composed dynamically, in response to the particulars of the
images being tracked.

Keywords
Video, linking, hypermedia, markup, image analysis, digital
library, teleconferencing, tracking

1. VIDEO IN HYPERMEDIA
While video is a major component of multimedia documents, it is
less common in hypermedia documents due to the inability to
treat video easily as a fully first-class data component. Links into
video streams are difficult to do with the detailed targeting and
semantic resolution of links in, say, text; this comes from the
difficulty of treating the objects depicted in video as
algorithmically identifiable, linkable content. Rather, video tends
to be manipulated as sequences of pixel frames with no further
subdivisions. When link markup is done on video streams, it is
done manually frame-by-frame. If links are associated with sub-
regions of a frame (object outlines, e.g.), the link anchor
identification is done manually. This is a tedious process, and
causes most hypermedia documents using video to limit video

links to starting, stopping, and hopping into the middle of video
streams, usually on a time basis.

We use the term hypervideo in this report to refer to a displayed
video stream that contains embedded user-clickable anchors [7].
These anchors are logically attached to objects within the video
environment, independent of location within the field of view.
For instance, a person's face in a video conferencing system may
be designated as a hyperlink. As the person moves within the
image, the clickable area that activates that hyperlink will move
with the image of the face, so that the face itself defines the active
region, or hot-spot.
There is increasing interest in video data being incorporated into
hyperdocuments. Digital libraries are growing in popularity and
scope, and video is an important component of such archives. All
major news services have vast video archives, valuable �footage�
that would be of use in education, historical research, even
entertainment. The current best practices for link markup in video
require completely, or considerably, manual markup of the video
frames with the active, or hot, areas that serve as link anchors in
hypervideo data [9]. Broad hypermedia access to the vast stored
video �footage� just mentioned will only be possible with
automated link markup methods.
We present here an algorithmic (non-manual) approach to
marking up video streams with hyperlink information at the sub-
frame, or object, level. Our system is called OvalTine, and it
allows the embedding of hyperlinks in both real-time video
streams (e.g., video teleconferencing) as well as stored video (e.g.,
digital libraries, video databases). We do not specify to what a
link anchor may refer, nor do we limit the type of objects that may
be designated as a link anchor. The goal of our work is to explore
the creation and maintenance of hyperlinks in video streams, and
to automate these procedures as much as possible.

Outline of the Presentation
In the following sections, we first discuss the basic OvalTine
system and its hyperlinking facilities for real-time video streams.
We then discuss the link storage layer we run on top of the real-
time trackers to allow capture of anchor tracking information and
link annotation of stored video. We then discuss the software
architecture of OvalTine that allows chaining together of different
trackers to get improved results for different video environments.
We conclude with a discussion of related previous research in
hypervideo and video tracking.

Copyright is held by author/owner(s).
MM 2002, Juan les Pin, France, December 1-6, 2002.
ACM 1-58113-477-0/02/0006.

 3

2. REAL-TIME ANCHOR TRACKING
Our work on OvalTine began with the desire to create a
hypermedia system in which video streams could be first-class
data -- that is, data in which link anchors could be embedded and
links followed, just as for text links in a Web page. The goal was
to allow a viewer of a video stream to establish a link anchor on
an object in the video frame, and as the object moved around the
frame, the link anchor moved as well, tracking the object that
represents it. The viewer could, at any time after creation of the
link, click on the anchor and retrieve the linked information. In
this way, an object in a video stream could be linked to text, to
sound, even to another video stream or to an object in a video
stream. A report on an early version of OvalTine discussed the
various distributed system architecture issues involved in storing
and serving video hyperlinks in a client/server implementation
[1]. In terms of that taxonomy, our current work is a
Server/Archived scenario, and we have chosen to implement a
Manual object selection scheme for initiating a tracked object
(hyperlink anchor).

Version 1 of OvalTine (OvalTine-RT) does real-time tracking of
faces in live video streams, such as you might have in a real-time
videoconferencing system. This tracking allows hypermedia link
anchors to be associated with objects in the video window,
creating a first-class hypermedia capability for video data. A face
in the video frame becomes a live link, a selectable target for the
user to click on to trigger some action. As the face moves around
the video screen, the live target area moves with it, providing the
illusion that the face itself is the hyperlink anchor. The target is
optionally made visible by means of a simple highlighted oval
that moves with the face in the frame. Links are URLs, associated
with an object when it is first selected as a link anchor (at the
initiation of tracking). A mouse click within the oval counts as a
click on the object, and the enveloping hypermedia layer
�follows� the link by launching a web browser with the URL
loaded.

OvalTine-RT is a dynamic, anchor-creating video-conferencing
application based on the mediaConf example application from
Silicon Graphics for their O2 workstations [29]. mediaConf is
based on SGI's dmedia libraries, which provide the basic
framework for a server/client video conferencing system. This
system is highly configurable, with forking of a video stream
possible at any node, regardless of whether it is a video source,
receiver, or relay. mediaConf includes a simple collaborative
drawing environment which has drawing primitives such as lines,
boxes, ovals, and a freeform pen.

To implement tracking of video collaborators� heads, we added a
real-time video analysis engine developed by Birchfield at
Stanford, which uses a mixed-mode analysis algorithm to search
for ovals, such as human faces, in a video field [25,26]. This
tracker works by combining an intensity gradient edge-detector
with a color histogram region-matcher, giving superior
performance in acquiring and tracking heads than either algorithm
does alone. The combination allows for rotations, tilts, limited
occlusions, and noisy backgrounds without losing focus1. Our

1 The new system design of OvalTine-SV (see section 4) supports
arbitrary combinations of tracking methods, like Birchfield�s
approach, via it�s tracker- chaining software architecture.

research goal is not necessarily to push the envelope on video
segmentation, but rather to make use of proven techniques in
creating hyperlinking facilities in video; Birchfield�s work was a
good starting point and we adapted his implementation.

The found faces are denoted by ellipses sent across the network as
drawing elements of mediaConf. These elements are further
extended with the addition of hyperlink data. In our case, we
chose simple ASCII URLs as the base case. When the user
activates tracking of a hypervideo anchor, the corresponding URL
information is merely captured using a text box within the GUI.

OvalTine-RT was developed on a pair of Silicon Graphics O2
workstations, running IRIX 6.3 OS, connected with 10bT
Ethernet over the standard network within the Computer Science
department at the UNC. No special configuring of the network
was done, in order to simulate more closely a natural user
environment. The video input was supplied from the standard O2
video camera through the integrated ICE video hardware grabbing
board. The mediaConf software was modified to accept the
addition of the HeadTrackerLib library. HeadTrackerLib was a
substantial rewrite of the headtracker application provided by
Birchfield et al. on the Windows platform. All Win32 specific
code was removed and replaced, resulting in a cross-platform
image-tracking library [30]. The multip C++ threading package
from UNC's Graphics Lab was used to implement our image
tracking and analysis computations in a separate thread.

Useage Example
A standard video conferencing session in OvalTine proceeds as
follows. The same application binary is started on both machines.
Each user registers his or her machine with the other through the
UI, which simply asks for a TCP/IP accessible machine name.
Each user then selects the other machine to be its video server, so
each machine is seeing the other�s camera view.

In order to generate anchors, each user selects the image of the
other user using an enhanced variant of the supplied drawing
tools. This triggers the building of an internal model of the image
coming from the server. That model is then used to track the
other person�s image. The anchor region can be made visible, or
not, depending on the user�s preference. If it is visible, it appears
as an oval overlaying the video image.

Each machine can also act as a server of anchors, by the user
selecting his or her own camera�s video stream, and operating on
it. Only one video stream at a time can actively be seen and have
anchors generated. Thus in OvalTine-RT, a machine can act as a
server-side anchor generator, or a client-side anchor generator,
but not both simultaneously.

Once an anchor is established in the video frame, a link to other
data can be made (to text annotations, images, web pages, other
video streams). Clicking on an anchor at any time that its video
object is visible in the video frame, regardless of how it has
moved since anchor creation, will retrieve the linked information
as one expects in a hypermedia system.

OvalTine-RT application was designed to exercise several key
points in real-time hypervideo: 1) server-side vs. client-side
anchor definition, 2) anchor propagation across a network, 3)
acceptable performance for real-time execution, 4) flexibility in
linked materials, 5) manual and automated anchor creation.

 4

Figure 1. OvalTine user interface showing two tracked objects

Figure 2. Two links on one tracked object, showing targets displayed

 5

3. STORED VIDEO: SPRITE LINK LAYER

Our initial plan was to use video anchors and automated tracking
to allow links to be created in video teleconferencing. This goal
required us to find and employ efficient image analysis algorithms
so that link anchors could be tracked in real-time, at frame rates of
at least several per second for multiple anchors/targets. As the
work progressed, it became apparent that the automated tracking
methods we employed were useful for stored video streams as
well as real-time streams.

OvalTine-RT does tracking of objects in video streams in real-
time. While this has utility in creating hypermedia capabilities
within previously inaccessible data domains like video-
conferencing, it does not have enough infrastructure to capture
and save all the calculated link anchors. They are computed
frame-by-frame and then lost as the next frame comes along. To
mark up stored video for playback, the basic tracking capabilities
of OvalTine-RT had to be augmented with a capture and storage
layer for link anchor positions.

To this end, we created Version 2 of OvalTine (OvalTine-SV)
using the existing tracking structure and COTS software (Apple
QuickTime and Sprites) for a link anchor storage layer. Our
original plan was to simply extend OvalTine-RT on the SGI IRIX
platform, utilizing the existing support for QuickTime saved
movies. QuickTime is a container file format and access
specification, not a movie codec, and allows for any QuickTime
capable application to handle any media format for which a codec
exists in the rather expansive QuickTime library. Multiple types
of data can be added to a QuickTime file in tracks, such as video
of various compression schemes, sound data, text, or any other
time-variant information. QuickTime's primary function is to
ensure that these tracks are kept synchronized. To reduce
confusion with the tracking properties of OvalTine, we will use
the term layer in this paper to refer to QuickTime tracks.

In the QuickTime nomenclature, sprites are object-based
animations in a layer that is separate from, but synchronized with,
the video layer. Sprites are usually used to produce simple
animations, moving a series of static images around a video field
much like traditional cartooning. Sprites exist in a QuickTime
layer of their own, and can be thought of as an overlay over the
video layer. The animations are separate from the video, so can
be included in the user presentation, or not, by easily toggling a
visibility flag. Each animation can be individually visible or not,
or the entire layer can be toggled at once.

Wired sprites [9] are sprites that react to user interaction,
registering events such as mouse-over (the cursor has been moved
over the sprite by the user), mouse-down (the user has pressed the
mouse button while the cursor is over the sprite), and mouse-up
(the user has released the mouse button while the cursor is over
the sprite). The wired sprites know their own boundaries and
automatically track when the user is potentially interacting with
them. They also keep track of which actions to perform for which
user events, and these actions can include simple changes to the
presented image, to moving within the movie to another time
code, opening another movie and jumping to any time code within
the new movie, and requesting actions of the system of other
applications.

Wired sprites offer exactly what is needed to make a video
markup storage layer � frame-by-frame synchronization, an
overlay layer to contain the tracked object regions, with visibility
toggling, built-in hit (click) detection, and 'link' traversal to
trigger actions on a successful click by the user viewing the movie
file. The file format is openly published, and QuickTime is fully
supported on several platforms, including the various versions of
Windows, and the two MacOS variants.

Re-Architecting the System
The implementation of QuickTime on IRIX, however, does not
offer support for sprites (or did not at the time we made the
implementation decisions). This limitation led us to re-sesign
significantly and re-implement the software for OvalTine-SV.
Since the object-tracking library has gone through a redesign to
be cross-platform implementable, we took the opportunity to
move OvalTine to a more commercial OS with stronger
QuickTime support, including wired sprites. We also took the
opportunity to extend the software architecture in a very useful
direction, using several OO design patterns for dynamically
composing objects [2]. The new OvalTine-SV architecture
provides the ability to chain multiple trackers together to analyze
any one anchor (this design and its advantages are discussed
further in section 4).

The OvalTine-SV tracker system makes calls to the QuickTime
library as it tracks objects in a frame. When the tracker discovers
the new location of an object, the coordinates are transmitted to
the sprite layer and recorded. When tracking is completed, the
sprite layer information is incorporated into the QuickTime
playback so the user sees the original video frame as well as the
overlaid sprite annotations. In the next section we discuss the
association of link targets (URLs) with the wired sprites.

3.1 Example markup session
A sample session might involve a user loading a video stream,
perhaps an existing news archive footage file. The goal is to add
hyperlinks to the video pointing to biographical information for
selected subjects in the video. The user begins by selecting a
QuickTime file to work on through use of the Open... menu item.
The movie appears in the video view, at the first frame. The user
uses the standard movie controller interface to move to the
segment of the video they wish to begin tracking in. The editing
mode is chosen from radio button palette, and a rectilinear box is
drawn around the face to be tracked. An oval will appear around
the face to indicate that the tracker has acquired it If the
registration of the oval to the face is not pleasing to the user, they
can simply choose the Undo menu item, and select again.

Once the object has been selected appropriately, the user can add
the necessary tag information to be used when the object is later
clicked on during playback. The Links window contains
bookmarks to items the user may wish to add to an anchor,
including http URLs for browser viewing, file URLs for local file
viewing, or movie URLs that trigger movement to another time-
code in the current movie; they might also open another movie
and jump to a particular time-code in it. A link can be dragged
and dropped onto the oval desired to be its trigger.

The user can now initiate a frame by frame tracking by selecting

 6

Track from the File menu or toggle the Track button in the main
window. As the tracker acquires the face in each frame, its
reported position is displayed as an overlay over the movie. At
the same time, the sprite, consisting of the oval, is saved to the
movie data in memory. If the user at any time is unhappy with the
tracking performance, they can stop the process, scan back to the
first frame they feel is incorrect (again, using the standard movie
controls), and re-select and re-initiate tracking. When the user is
satisfied with the results of the tracking, the movie can be saved
back to disk. Any QuickTime capable application will now be
able to show the tracked face in the movie, and register hits on the
face if clicked upon. The action on link traversal will be
dependent on the capabilities of the particular viewer application.
A web browser will be able to traverse URLs, for instance.

3.2 User Interface Examples
OvalTine-SV is set up to allow link markup of stored video as an
editing task. Figure 1 shows the video display window, the
properties window, and the URLs window. The video display
window presents the video data and shows the tracked objects as
(optionally) outlined ovals. For real-time applications, such as
video conferencing, the playback controls are inoperative. For
markup of stored video, the user can do the standard start, stop,
pause, and slider frame selection operations on the video stream.

The tracking properties window allows the user to select the
type(s) of tracking algorithms to apply to the video frames. The
architecture of OvalTine-SV allows multiple tracking algorithms
to be chained together and applied in sequence for each anchor to
be tracked. A user can even apply a different chain of trackers to
each different oval if desired; OvalTine-SV spawns a separate
tracking thread for each ellipse. Some trackers work better than
others in varying images; the selection of specific trackers to use
depends on image properties such as color variability, background
complexity, object motion, texture, etc. A default chain is
designated for normal use. As in the Birchfield tracker of
OvalTine-RT, this is currently set at an intensity gradient
algorithm followed by a color histogram.

Once a link anchor (ellipse) has been established in the video
window, the user can associate one or more URLs with that
anchor to be targets of the link(s). These URLs show up in the
URL window in the lower left. Figure 1 shows one URL for each
oval, and the association is made by the color of the tag.

Editing progresses as described in the previous section. The user
selects a starting frame with the slider controls, and then
designates one or more objects to be tracked. The video is started
with the �track� button, and the tracker chain for each oval causes
the link anchors to follow the objects as they move in the video
frame. The sprite infrastructure captures the layout information
needed to maintain the link anchors in association with the video
data. At any point the user may pause the video, add or delete
ovals, and continue with tracking.

URLs can be added to the tracked objects at any point, either
during tracking, or during playback editing of the marked-up
video data. Though not shown, ovals can be linked to any first-
class Web data, including another OvalTine-SV video clip.
There is also a �lost� link palette (not shown) that collects the
URLs associated with objects that are being tracked, but move out
of the video window. Any URLs associated with such an object

are taken out of the URL window and saved in the �lost� list. This
is a convenience that makes it easier for the user to re-associate
these URLs if the tracked object should reappear in the video
window and need to be tracked again. An obvious topic for more
research is applying face/object recognition algorithms to
automate the re-association of lost links with link anchors when
they re-appear in subsequent frames.

Figure 2 shows OvalTine-SV in use while viewing a marked-up
video stream. Here we see a CNN clip where the face of the
reported has been annotated with 2 different links. One link is to
the CNN home page (seen displayed in the background). The
other link is to an article and map on Pakistan, which is the topic
of the video; this page is shown in the foreground.

There are several ways to manage multiple links on each oval.
One is simply to left-click the mouse on the ellipse in the video
window. This will cause the top link in its URL list (shown in the
URL window, lower left) to be followed and displayed. Another
method is to right-click on the oval and a pop-up menu will
present all the URLs for that oval for selection of one to follow.
A third method is to directly click on the desired URL in the URL
window; these URLs are only displayed in the window while their
associated ovals are in the video window. In the editing mode (as
opposed to playback) the order of URLs in the URL window for
each oval can be rearranged via click-and-drag operations so that
new defaults can be established.

Finally, there is a mode the user can select during editing that
causes all the associated links on an object to be followed
concurrently when an oval is left-clicked. Each link target will be
displayed in a separate browser window. This mode is related to
the concurrent and synchronized browsing possible with the
multi-head/multi-tail links found in MMM [5,6] and first studied
in Trellis [3, 4].

4. OVALTINE SYSTEM ARCHITECTURE
After the initial prototype was operating, we spent time re-
architecting and re-implementing OvalTine-RT to make the tool
more adaptable to new tracking approaches and to adhere to good
object-oriented design patterns [2]. The resulting OvalTine-SV
prototype is robust and extensible.

We initiated a redesign of the code and functionality in January of
2001, and finished in late March of the same year, converting
approximately 15,000 lines of C++ code of varying quality in
some rather extreme ways. Design patterns were critical in the
redesign and re-implementation phase, and used throughout the
system.

OvalTine-SV started as a conglomeration of two very different
sets of code. One, called MediaConf, is a demonstration video
conferencing app from Silicon Graphics that runs on their line of
O2 workstations. The other was a half-completed (and quite
broken) set of code from Stanford University illustrating a way of
tracking heads and faces in real-time video on a specific
proprietary video card on the Windows platform. The work
involved in taking these two utterly different bodies of code and
making them work together was tremendous, not the least of
which was involved in just making them work at all
independently.

Once we had the code working well enough for demos, we

 7

decided to re-factor and rewrite the system, since it utterly failed
to meet our original vision. What we wanted was a flexible
research platform that would run on multiple OSs, would handle
video feeds from live cameras, stored files, or from a network
feed, would allow different tracking algorithms to be
experimented with in a freeform manner, and would be extremely
simple to use and develop with. Instead what we had was a
system that was incredibly fragile, had one hard-coded algorithm
for tracking, ran only on the SGI O2 platform (and then only on
certain OS versions), and was limited to a live local video feed.

The reworking effort was done from the viewpoint of using design
patterns as a springboard for system architecture design, as well as
guiding implementation. These patterns gave the architecture the
following properties:

• Extensible algorithm system for object tracking in the
video stream... algorithms should be easily added to the
pool for selection, and should work interchangeably

• Algorithms should be chainable for efficient pre and
post processing

• Dynamic selection of algorithms, preferably on the fly
during execution, but a simple selection process for
configuration at launch is acceptable

• The video tracking library should have a simple external
API

• The video tracking library should be completely
separated from any GUI, front end app, or IO, except as
through the above API

• The video tracking library should be cross-platform

While each requirement created specific patterns in our new
architecture, the first two (extensible trackers, chainable trackers)
are of particular interest to a hypervideo audience. We therefore
examine each property in more detail in the following sections.

4.1 Extensible tracking algorithms
One of the most critical components needed in the redesign was to
allow new tracking algorithms to be added to the system as
imaging researchers develop them. This exactly corresponds to
the Strategy pattern, whose intent is given in the patter literature
as:

 "Define a family of algorithms, encapsulate each one, and
make them interchangeable."

As new concepts in identifying object in an image are developed,
OvalTine-SV can be extended without being abandoned or re-
written. Extensions can be done by hypervideo designers with
OO programming skills; it involves writing new classes with the
same basic form as the existing trackers, and adding their
compiled for to the class libraries.

Figure 3 shows the full design pattern diagrams for the Strategy
pattern that give OvalTine-SV extensibility in tracker algorithms.
By looking at the structure of the pattern in these diagrams, we
can quickly start identifying the basic concept classes to fulfill the
roles: Context is our Tracker system, Strategy is an abstract base
class corresponding to our idea of a SearchEngine, and the
ConcreteStrategy roles will be filled by the actual algorithms. In
our initial situation, we have one algorithm, which we called

BirchfieldSearchEngine, after the author of the describing paper.

4.2 Chainable trackers
The BirchfieldSearchEngine is actually a hybrid tracking
algorithm that uses two separate approaches: a gradient based
edge detection algorithm to find an oval shape corresponding to a
head; and a color histogram approach that detects the face itself
through a visual field analysis. We wanted to compare the
performance of the BirchfieldSearchEngine against the individual
algorithms comprising it, but unfortunately the conglomerated
algorithm was originally written as a monolithic piece of code.
We considered writing two completely new engines, to recreate
the two algorithms, but decided that this was a poor way of
reusing the concepts, since we would be reusing no code.

What was needed was a way to have the object
BirchfieldSearchEngine reuse the code from the other engines,
instead of attempting to reuse the code from the hybrid. This
would necessitate a SearchEngine class calling two other
SearchEngines, and using the results to create a third set of
tracking feedback. This meets the criteria for applying the
Composite pattern:

"Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects
and compositions of objects uniformly."

Figure 4 shows the design pattern diagrams for the Composite we
use to give OvalTine-SV chainable trackers. The structure of the
pattern is straightforward, where the Client role is naturally again
that of Tracker, the Component is a SearchEngine, the class
fulfilling the Composite role we will call blandly enough
CompositeSearchEngine, and the Leaf role will be our various
SearchEngines that do the actual tracking.

This feature allows OvalTine-SV to track objects by passing
image information from a frame though several different tracking
algorithms in series. Each has the opportunity to decide if an
object appears in the image or not, either using the data on its own
or by using the conclusions of a prior tracker.

We also spawn a new thread for each object being tracked. This
allows a different chain of trackers to be applied to each different
object, if such is desired. It might, for example, be easier to track
faces with one combination of algorithms, and easier to track
rectilinear objects (books, signs, etc.) with a different set of
algorithms. OvalTine-SV will support this variance.

 8

ggggg

Figure 3: Strategy pattern for extensible tracker

Figure 4: Composite pattern for chainable tracker

 9

5. RELATED WORK
Multimedia has been trending from text to static images to video.
On a parallel path, hyperlinking systems, most notably the World
Wide Web, have evolved from the use of pure text to the
incorporation of static images with embedded anchors (image
maps), and now to video streams with active regions [9, 17].

Video Segmentation and Object Tracking
Numerous research projects have concentrated on segmentation of
video into regions (objects). The results are too numerous to list
thoroughly. Our focus is not on finding better segmentation or
location methods, but rather on employing effective ones for
creating hyperlinks for hypervideo. Our architecture makes it
easy for better identification and tracking methods to be worked
into OvalTine-SV as they are found, or to be used in combination
as in Birchfield�s tracker [25,26] mentioned earlier as our base
technique.

Notelook [24], from Xerox, is a system for manipulation of video
data during a conference or presentation; it allows a form of video
annotation using the live video feed. Frames from the video
stream can be captured and incorporated into notes on a pen-
based computer; web pages can be generated with links to the
captured notes and video clips. It does not, however, seems to
allow links in the captured video streams; rather it seems to create
links on web pages that launch video clips.

In [28] researchers are tracking faces in a video stream for a
teleconference for the purpose of camera control; they use skin
color cues to identify objects to track. This method does not
distinguish between faces and hands well, however, and the
Birchfield combination deals more effectively with environments
that have skin-colored regions that are not faces.

Numerous projects are developing ways to identify objects in a
video frame more rapidly, more exactly, and more reliably [31,32,
36, 27, 22], including work done in the compressed domain [35].
Our work currently is in the non-compressed domain, but nothing
prevents compressed techniques from being incorporated into the
software architecture of OvalTine. Techniques like those in [32]
scan the entire video frame to segment it into objects; we depend
on the user to highlight the initial region of an anchor, eliminating
the need for methods that require scanning and segmenting the
entire video frame.

Some methods are promising in their exactness [33, 34] but are
too computationally demanding for use in high-frame-rate real-
time tracking and are better suited for off-line annotations.
OvalTine-RT currently uses trackers that are simple enough to be
computed for multiple objects at a high-frame-rate. We have not
altered the tracker selections for OvalTine-SV, but we could
possibly use more expensive (and hence more accurate)
techniques for stored video annotation. However, we would have
to alter OvalTine-SV somewhat to slow down the replay rate so
each frame would be annotated. In our current implementation,
tracking is done by analyzing whatever the current frame happens
to be when the previous tracker analysis is done. Hence,
expensive trackers would not work acceptably in real-time
streams; they would also cause too many intervening frames to be

skipped in stored video annotation if the replay rate were not
slowed.

Video in Hypermedia Documents
A good overview of the issues and technologies in current
hypervideo systems can be found in class notes at Texas A&M
[8]. The Hypercafe system from GA Tech is often cited in
hypervideo discussions [7]; however, it is a presentation system
mostly and does not support the dynamic and automatic link
anchor creation we are exploring in OvalTine. Automation of
content creation in hypertext is a well-researched area for non-
video media [10,11,13]. While much work has been done in the
realm of context-assisted anchor creation in video, particularly in
news coverage videos, these rely on a blend of modal data,
including much that is manually entered by human operators [12,
15, 20, 21].

We are more interested in nearly-context-free object tracking
within image streams. The image analysis engine selected for use
on the video, or the user manually initiating links, can supply the
context. A facial recognition system designed to attribute a link to
a database record consists of an entirely different inherent context
than an engine that identifies and tracks types of automobiles on a
roadway, but they both can operate equally well on the same raw
video stream. This is a complementary concept to content-
oriented navigation [14], where the context is provided during
modal analysis. Since the context of the link data has been
removed from the dimensions we define, the resultant contextual
link generation engines are also close analogues to Sprocs as
defined by Nürnberg, et al [18].

Links in Hypervideo
Every current popular method for adding link hotspots to video
requires manual selection of video objects, on a frame-by-frame
basis. No research efforts in automation have yet made it into
common practice in a widely used system such as those from
Apple (QuickTime [9]). By contrast, an automatable object
tracking system is much more desirable, both for real-time
applications, and for the automated addition of hyperlinks to the
vast amount of archived video currently in existence.

Two notable exceptions are the Himotoki system from NEC [14]
and MAVIS [23]. Himotoki seems to do automated extension of
link hotspots from initial frame into succeeding frames, during
playback, without manual interventions, but no details of how this
is done are given in their report. The MAVIS hypermedia system
provides links in video by computing color histograms and other
image analysis methods on selected regions of a video frame; the
report on MAVIS indicates that videos are halted for link
following, at which time the analysis is done and a database
search initiated for matches. This �late binding� approach has the
advantage of allowing the items linked to a video hotspot to grow
in number as the target database is expanded, since matches are
computed rather than hardwired to a hotspot.

Our approach allows link following without stopping the video
stream, since the link anchors are tracked from frame-to-frame
automatically. Note that this dynamic capability is what made
OvalTine-RT techniques useful for real-time streams.

 10

5. CONCLUSIONS
OvalTine-RT is a system for tracking objects in real-time video
streams (video conferences) and allowing hyperlink anchors to be
associated with these tracked objects. We have described here the
further use of OvalTine-SV for applying automated object
tracking to stored video streams, thereby allowing automated
markup of archived video data with hyperlinks.

Extending OvalTine from real-time to archived video requires a
link layer to capture and maintain the link anchors as they are
tracked from frame to frame; in the real-time mode, this
information is available at each instant, but lost as each frame
progresses to the next. We demonstrated such a link layer on top
of the basic OvalTine tracker using COTS software � namely, the
Wired Sprites of Apple�s QuickTime standard. We designed the
software architecture of OvalTine-SV using OO design patterns to
allow multimedia researchers to extend the basic object tracking
algorithms with their own work, or to conveniently investigate
combination of trackers for effectiveness in varying video
environments.

Use of OvalTine-SV for hyperlink markup of stored video in not
fully automated, as it requires user selection of initial anchor
regions, as well as user designation of the URLs for the link
targets. However, it can progress as rapidly as viewing the
videos, once link anchors are designated. This is a significant
improvement on how video are marked up for hyperlinks
currently.

7. REFERENCES
[1] Smith, J., D. Stotts, and S.-U. Kum, "An Orthogonal
Taxonomy for Hyperlink Anchor Generation in Video Streams
using OvalTine," Proc. of Hypertext 2000 (ACM), May, 2000,
San Antonio, Texas, pp. 11-18.

[2] Gamma, Helm, Johnson, and Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[3] Stotts, P.D., and R. Furuta, "Petri Net Based Hypertext:
Document Structure with Browsing Semantics," ACM Trans. on
Information Systems (ACM), vol. 7, no. 1, Jan. 1989, pp. 3-29.

[4] Furuta, R., and P. D. Stotts, "Programmable Browsing
Semantics in Trellis," Proc. of Hypertext '89 (ACM), Pittsburgh,
Nov. 1989, pp. 27-42.

[5] Capps, M., B. Ladd, D. Stotts, "Enhanced Graph Models in
the Web: Multi-client, Multi-head, Multi-tail Browsing,"
Computer Networks and ISDN Systems, vol. 28 (Proc. of the 5th
WWW Conf., May 6-10, 1996, Paris), pp. 1105-1112.

[6] Ladd, B., M. Capps, D. Stotts, and R. Furuta, "Multi-
head/Multi-tail Mosaic: Adding Parallel Automata Semantics to
the Web," World Wide Web Journal, O'Reilly and Associates Inc.,
vol. 1 (Proc. of the 4th International WWW Conference, Boston,
December 11-14, 1995), pp. 433-440.

[7] Sawhney, N., D. Balcom, and I. Smith, �HyperCafe: Narrative
and Aesthetic Properties of Hypervideo�, Hypertext �96
Proceedings, ACM, Washington, D.C., 1996, pp. 1-10.

[8] Francisco-Revilla, L., �A Picture of Hypervideo Today�,

http://www.csdl.tamu.edu/~l0f0954/academic/cpsc610/p-1.htm,
1998.

[9] Apple Computer, �Introduction to Wired Movies, Sprites, and
the Sprite Toolbox�, http://developer.apple.com/techpubs/
quicktime/qtdevdocs/REF/refWiredIntro.htm

[10] Bernstein, M., �An apprentice that discovers hypertext
links�, Hypertext: Concepts, systems and applications:
Proceedings of the European conference on Hypertext, INRIA,
France, 1990, pp. 212-223.

[11] Bernstein, M., J. D. Bolter, M. Joyce, and E. Mylonas,
�Architectures for Volatile Hypertext�, Hypertext �91
Proceedings, ACM, San Antonio, TX, 1991, pp. 243-260.

[12] Boissière, G., �Automatic creation of hypervideo news
libraries for the World Wide Web�, Hypertext �98 Proceedings,
ACM, Pittsburgh. PA, 1998.

[13] Glushko, R.J., �Design issues for multi-document
hypertexts�, Hypertext �89 Proceedings, ACM, Pittsburgh, PA,
1989, pp. 51-60.

[14] Hirata, K., Y. Hara, H. Takano, and S. Kawasaki, �Content-
oriented Integration in Hypermedia Systems�, Hypertext �96
Proceedings, ACM, Bethesda, MD, 1996, pp. 11-21.

[15] Ip, H.H., and S. Chan, �Hypertext-Assisted Video Indexing
and Content-based Retrieval�, Hypertext �97 Proceedings, ACM,
Southhampton, UK, 1997, pp. 232-233.

[16] Kendall, R., �Hypertext dynamics in A Life Set for Two�,
Proc. of Hypertext �96, ACM, Bethesda, MD, 1996, pp. 74-84.

[17] Liestøl, Gunnar, �Aesthetic and Rhetorical Aspects of
Linking Video in Hypermedia�, Proc. of Hypertext �94, ACM,
1994, pp. 217-223.

[18]. Nürnberg, P.J., J.J. Leggett, and E.R. Schneider, �As We
Should Have Thought�, Proc. of Hypertext �97, ACM,
Southhampton, UK, 1997.

[19] Stotts, P. D., and R. Furuta, �Dynamic adaptation of
hypertext structure�, Proc. of Hypertext �91, ACM, San Antonio
TX, 1991, pp. 219-232.

[20] Zhang, H.J., et al., �Automatic Parsing and Indexing of News
Video�, Multimedia Systems, 2 (6), pp. 256-266, 1995.
[21] Zhang, H.J., C.Y. Low, S.W. Smoliar, and J.H. Wu, �Video
Parsing, Retrival and Browsing: An Integrated and Content-Based
Solution�, Multimedia �95 Proceedings, ACM, 1995, pp. 15-24.
[22] Hua, K.A., and J. Oh, �Detecting video shot boundaries up to
16 times faster,� Proc. of ACM Multimedia 2000, Los Angeles,
CA, 2000, pp. 385-387.

[23] Lewis, P., H. Davis, S. Griffiths, W. Hall, and R. Wilkins,
�Media-based Navigation with Generic Links, � Proc. of ACM
Hypertext �96, Washington, DC, March 1996, pp. 215-223.

 11

[24] Chiu, P., A. Kapuskar, S. Reitmeier, and L. Wilcox,
�NoteLook: Taking Notes in Meetings with Digital Video and
Ink,� Proc. of ACM Multimedia �99, Orlando, FL, Nov. 1999,
pp. 149-158.
[25] Birchfield, S., �Elliptical head tracking using intensity
gradients and color histograms,� Proc. of the IEEE Conf. On
Computer Vision and Pattern Recognition, Santa Barbara, CA,
June 1998, pp. 232-237.
[26] Birchfield, S., �Elliptical Head Tracking Using Intensity
Gradients and Color Histograms,� implementation code at URL
http://vision.stanford.edu/~birch/headtracker/
[27] Fan, L., and K.K. Sung, �Model-based varying pose face
detection and facial feature registration in video images,� Proc. of
ACM Multimedia 2000, Los Angeles, CA, 2000, pp. 295-302.

[28] Stiefelhagen, R., , J. Yang, and A. Waibel, �Modeling Focus
of Attention for Meeting Indexing,� Proc. of ACM Multimedia
�99, Orlando, FL, Oct. 1999, pp. 3-10.
[29] Silicon Graphics, Inc., �mediaConf Videoconferencing,�
https://toolbox.sgi.com/src/demos/O2/mediaConf/, July 1997.

[30] Smith, J. McC., �HeadTrackerLib: Generalized head
tracker,� http:://www.cs.unc.edu/~smithja/HeadTrackerLib/, Oct.
1999.

[31] Yang, J., X. Zhu, R. Gross, J. Kominek, Y. Pan, and A.
Waibel, �Multimodal people ID for a multimedia meeting
browser,� Proc. of ACM Multimedia �99, Orlando, FL, Oct. 1999,
pp. 159-168.

[32] Kuhne, G., S. Richter, and M. Beier, �Motion-based
segmentation and contour-based classification of video objects,�
Proc. of ACM Multimedia �01, Ottawa, Canada, Oct. 2001, pp.
41-50.

[33] Luo, H., and A. Eleftheriadis, �Designing an interactive tool
for video object segmentation and annotation,� Proc. of ACM
Multimedia �99, Orlando, FL, Oct. 1999, pp. 265-269.

[34] Pass, G., R. Zabih, and J. Miller, �Comapring images using
color coherence vectors,� Proc. of ACM Multimedia �96, Boston,
MA, 1996, pp. 65-73.

[35] Luo, H., and A. Eleftheriadis, �On face detection in the
compressed domain,� Proc. of ACM Multimedia 2000, Los
Angeles, CA, 2000, pp. 285-294.

[36] Kim, C., and, J.-N. Hwang, �An integrated scheme for
object-based video abstraction,� Proc. of ACM Multimedia 2000,
Los Angeles, CA, 2000, pp. 303-311.

