
Technical Report TR02-010

Department of Computer Science
Univ of North Carolina at Chapel Hill

Distributed Pair Programming:
Empirical Studies and Supporting Environments

Prashant Baheti, Laurie Williams,
Edward Gehringer

Department of Computer Science
North Carolina State University

Raleigh, NC 27695

David Stotts, Jason McC. Smith
Department of Computer Science

 University of North Carolina
Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

March 15, 2002

Distributed Pair Programming:
Empirical Studies and Supporting Environments

Prashant Baheti, Laurie Williams,

Edward Gehringer
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
+1 919-755-1264

ppbaheti@unity.ncsu.edu

David Stotts, Jason McC. Smith
Department of Computer Science

 University of North Carolina
Chapel Hill, NC 27599-3175

+1 919-962-1833
stotts@cs.unc.edu

ABSTRACT
Previous research [1, 2] has indicated that pair programming
is better than individual programming when the pairs are
physically colocated. However, important questions arise:
How effective is pair programming if the pairs are not
physically next to each other? What if the programmers are
geographically distributed? An experiment was conducted to
compare the different working arrangements of student teams
developing object-oriented software. The teams were both
colocated and in distributed environments; some teams
practiced pair programming while others did not. The results
of the experiment indicate that it is feasible to develop
software using distributed pair programming, and that the
resulting software is comparable to software developed in
colocated or virtual teams. Our early experiments have led to
the creation of a more comprehensive environment for
support of distributed pair programming, using dual screen
projectors and hymermedia-enhanced video streams. Our
findings will be of significant help to educators dealing with
team projects for distance-learning students, as well as
organizations that are involved in distributed development of
software.

Keywords
Extreme Programming, XP, pair programming, collaborative
software engineering, distance education, virtual team, video
hyperlink

PAIR PROGRAMMING, XP, AND DISTRIBUTED
COLLABORATION

Increasingly, programmers are working in geographically
distributed teams. Escalating trends in teleworking, distance
education, and globally distributed organizations are making
these distributed teams an absolute necessity. These trends
are beneficial in many ways, particularly for those in
geographically disadvantaged areas. However, it is not
believed that any of these arrangements makes a programmer
more effective than if all the programmers were, indeed, co-
located. Therefore, organizations must strive to maximize
the efficiency and effectiveness of these unavoidably
distributed programmers and teams.

This paper describes the development and study of a
technique tailored for distributed programming teams. The

technique is based on an emerging software engineering
methodology known as pair-programming combined with
nearly 20 years of widespread and active research in
collaborative software systems. We aim to show that
geographically distributed programmers benefit from using
technology to collaborate synchronously with other
programmers. Our objective is to demonstrate that the
geographically distributed programmers who collaborate
synchronously with other programmers will outperform
geographically distributed programmers who work
independently.

Professional interest in pair programming has risen
dramatically in recent years with the success of an agile
software development process called Extreme Programming,
or XP [10,11] developed by Kent Beck. XP is distinguished
from more traditional development processes by emphasizing
(even requiring)

• pair programming
• test-first code development at the unit level
• full regression test support (with JUnit [12,13])
• lack of up-front detailed design
• frequent code refactoring [14]
• on-site client
• expectation of requirements changes.

XP practitioners develop requirements conversationally with
the client, and deliver frequent working prototypes for
feedback and changes. No code is written unless it is needed
(no programming for the �perhaps� future), and when a
design grows to the point that it feels unwieldy it is
refactored and re-architected before further extension. The
process is best known, though, for pair programming, which
is at the heart of the productivity increases many XP teams
are seeing.

Anecdotal and statistical evidence indicate that pair-
programming two programmers working side-by-side at
one computer, collaborating on the same design, algorithm,
code or test is highly productive. Cockburn and Williams
have produced statistical results that show pair-programmers
produce higher-quality products in essentially half the
elapsed time as individual programmers [8]. We believe the
pair-programming model can be modified for distributed

collaborative development, and that we will see similar
benefits.

To evaluate the effectiveness of distributed pair
development, we are running controlled empirical studies
involving students at North Carolina State University and the
University of North Carolina at Chapel Hill. Students use
interactive information technology over the Internet, such as
PCAnywhere and NetMeeting, to jointly and simultaneously
control a programming session and to speak with each other
synchronously. Our early experiments have led us to develop
the more video-enhanced environment described in the
second half of this paper to support the remote synchronous
collaboration required in DXP software development.

PREVIOUS WORK

Pair Programming
Pair programming is a style of programming in which two
programmers work side by side at one computer, continu-
ously collaborating on the same design, algorithm, code or
test. One of the pair, called the driver, is typing at the
computer or writing down a design. The other partner, called
the navigator, has many jobs. One of the roles of the
navigator is to observe the work of the driver, looking for
tactical and strategic defects in the work of the driver.
Tactical defects are syntax errors, typos, calls to the wrong
method, etc. Strategic defects are said to occur when the
team is headed down the wrong path � what they are
implementing won�t accomplish what it needs to accomplish.
Any of us can be guilty of straying off the path. A simple,
�Can you explain what you�re doing?� from the navigator
can serve to bring the driver back onto the right track. The
navigator has a much more objective point of view and can
better think strategically about the direction of the work. The
driver and navigator can brainstorm on demand at any time.

 An effective pair-programming relationship is very active.
The driver and the navigator communicate at least every 45
seconds to a minute. It is also very important for them to
switch roles periodically. Note that pair programming
includes all phases of the development process � design,
debugging, testing, etc. � not just coding. Experience
shows that programmers can pair at any time during
development, in particular when they are working on
something that is complex. The more complex the task is,
the greater the need for two brains [1, 6].

Controlled studies have shown that pairs finish in about half
the time of individuals and produce higher quality code. The
technique has also been shown to assist programmers in
enhancing their technical skills, to improve team
communication, and to be more enjoyable [1, 6, 7, 8].

Virtual Teaming
A virtual team can be defined as a group of people, who
work together towards a common goal, but across time,
distance, culture and organizational boundaries [9]. In our
context the goal is development of software. The members
of a virtual team may be located at different work sites, or
they may travel frequently, and need to rely upon
communication technologies to share information,

collaborate, and coordinate their work efforts. As the
business environment becomes more global and businesses
are increasingly in search of more creative ways to reduce
operating costs, the concept of virtual teams is of paramount
importance [3].

A primary consideration in virtual teaming is that of
communication [4]. Poor communication can cause problems
like inadequate project visibility, wherein everyone does
his/her individual work, but no one knows if the pieces can
be integrated into a complete solution. Coordination among
the team members could also be a problem. Finally, the
technology used must be robust enough to support distribu-
ted development of software, not just to provide
communications.

The experiments we ran used virtual teams of two kinds.
One kind was developing software in traditional, individual
programmer style, and thus needed primarily
communications support for integration of work; the other
was developing software using the technical approach of
pair-programming, where it is essential for proper
collaboration that each team member have the illusion of
sharing a single PC in real-time, synchronously.

Collaborative systems and distributed workgroups

The earliest example of a collaborative computer system was
NLS-Augment by Engelbart [15], an initial version of which
was demonstrated in the early 1960�s. Engelbart�s system
used shared CRTs, audio connections, mouse, and keyboard
to allow crude teleconferencing and shared examination of
text files by users who were not co-located. From these early
beginnings, collaborative software systems became the
subject of widespread research more than 15 years ago, with
the creation of the PC. Ongoing research tends to focus in
three main areas: hardware to provide effective
communications; software concepts that allow sharing of
artifacts; and conceptual models of how people want to � or
are able to � interact effectively.

Many collaborative system ideas developed in research labs
have now found their way into practice, and we are seeing
commercially viable products and services for supporting
collaboration. These products are used to create virtual
workplaces and allow people around the world to work on
coordinated group efforts. The most commonly used
collaborative tools are �chat rooms�. Though simple in
technical terms, chat rooms� wide usage demonstrates that
simple technology can be used very effectively. Many
commercial vendors support chat servers for exchange of
text, audio, and video streams (Yahoo, Excite, PalTalk, and
Microsoft to name a few) and hundreds of thousands of
people use these services. Most usage of chat servers is for
social interactions like game playing, but they are also used
to support businesses. We repeat that simple technology
often gets you large gains.

Shared software artifacts

Numerous researchers have developed software for
supporting human interactions within shared artifacts. These

include general systems, like shared whiteboards for
drawing, and shared editors for documents and multi-media
streams. They also include special-purpose systems like
ICICLE [16] for code inspection and review, and gIBIS for
design review and logical argument construction [17]. Trellis
[18] and MMM [19] are two systems for collaborative
hypermedia and Web browsing. Trellis was built on the idea
of structuring a hyperdocument as an abstract parallel
process specification, allowing group interaction on the
document to be defined in the document link structure.
MMM extended this idea by extracting the process definition
out of the document and allowed the group interaction rules
(collaboration protocol) to be dynamically defined (as
opposed to being hard-wired in the source code). In this
way, group interactions can be developed and changed
without changing the MMM software. Further research has
led to methods for verifying the correctness of collaboration
protocols [20,21].

In the experiments we have done, the shared artifact is, at the
lowest level, the entire PC screen. We wanted to explore the
technological feasibility of distributed pair programming
with the simplest of technical structure. Thus we chose not
to experiment with shared artifacts at the code or document
level, allowing the programmers to work in pairs with exactly
the same tools they use when programming alone.

Hardware and graphics for collaborations

Many of the most visible developments in collaborative
systems have come from computer graphics. While their
display technologies have remarkable sophistication in their
visual imagery, most of them do not support distributed
collaborations. The CAVE [22] is a multi-person, room-
sized, high-resolution, 3D video and audio environment
developed at the University of Illinois at Chicago. It
functions as virtual reality theater, made up of three rear-
projection screens for the front, right and left walls and a
down-projection screen for the floor. Multiple users may sit
in the space, wearing special glasses to decode the stereo
projections. The CAVE is state-of-the-art in terms of visual
impact and virtual reality presentation; it is limited in
distributed collaboration support as it requires all
participants to be present in the same space in order to work
together. The DataWall [23] at MIT and the PowerWall [24]
at the University of Minnesota are similar large display
projects. The primary purpose of these large displays is to
visualize and display very high-resolution data, often from
large scientific simulations performed on supercomputers or
from high resolution imaging applications. The large display
areas allow small groups of collaborators to see the display
clearly and without obstruction. It is possible to walk up to
the display and point to features of interest, just as one would
do while discussing work at a blackboard. However the
emphasis is on graphics clarity, and not remote collaboration.

Unlike the previously mentioned display projects, Virtual
WorkSpace [25] was intended as an environment to enable
distributed collaboration over a network. It depends heavily
on computer-generated graphics and virtual reality devices as
well. ClearBoard [26] was similarly a non-co-located

collaboration support system that allowed two users to
appear to sit face to face, and see the shared work between
them; emphasis was placed on drawing applications. The
system required special hardware (the clear screen), and was
not built with COTS technology (as is our environment).
Experiments using ClearBoard showed that increased eye
contact and the sense of presence of the remote collaborator
was important in providing effective work performance.

The Office of the Future project [27] at UNC, under the
direction of Henry Fuchs, seeks to combine network-based
collaboration with the superior graphics and image
manipulation capabilities of virtual reality systems. It is a
long-term project that will not be generally usable for years
and it will require expensive special-purpose support
hardware and high-performance graphics engines.

INITIAL PLATFORM EXPERIMENT

An initial experiment was done in early fall 2001 between
NCSU and UNC to determine an effective technical platform
to allow distributed pair programming. We wanted to use
simple COTS technology � something that would be readily
available to anyone � rather than research projects or
platforms. Two pairs of programmers worked over the
Internet to develop as a 4-person team a modest Java gaming
application; each pair was composed of one programmer
from each remote site. The team developed a Mancala game,
with GUI, in 8 sessions that varied from 1 to 2 hours in
length. In addition to the actual pair programming sessions,
the project was initiated with a face-to-face meeting in which
the team members agreed on requirements and an overall
system metaphor. Thus the experiment mainly tested the
effectiveness of the technology for pair coding and not the
entire software development process.

The members of a pair viewed a common PC display using
desktop sharing software; we trailed Microsoft NetMeeting,
Symantec�s PCAnywhere, and VNC. They used headsets
and microphones to speak to each other, and text chat for
communications as well. We trailed several instant-
messaging programs (Yahoo Messenger, PalTalk, AOL
Messenger) before implementing the project. The final
experiment was run with NetMeeting, as this program
provided PC sharing, text, audio, and video in one platform.

A typical pairing session involved two programmers sharing
desktops, with one of the pair (the navigator) having read-
only access while the other (the driver) actually edited the
code. The changes made by the driver were seen in real time
by the navigator, who was constantly monitoring the driver�s
work. The navigator could communicate with the driver by
speaking over the microphone, or via instant messaging. The
students were furnished Intel digital cameras to use as
Webcams for videoconferencing, to allow them, for example,
to show paper design documents to each other. However, as
the sessions progressed, none of these teams found the need
to use the Webcams.

Our goal was not to test if a remote pair could be as efficient
as a co-located one, but to simply see if the programming
pairs could work well enough to make functional software in

reasonable time. The pairs reported that after a few early
sessions in which they were learning the platform behavior,
they felt comfortable and natural coding with this
technology. The final game works correctly. From this
experiment we found that effective remote teaming could be
done with the PC sharing software and audio support. This
platform was then used in the more comprehensive
controlled experiment described next.

COMPREHENSIVE PAIRING EXPERIMENT

Hypothesis
After the platform experiment, we ran an experiment to
assess whether geographically distributed programmers
benefit from using technology to collaborate synchronously
with each other. Specifically, we examined the following
hypotheses:

• Distributed teams whose members pair synchronously
with each other will produce higher quality code than
distributed teams that do not pair synchronously.

• Distributed teams whose members pair synchronously
will be more productive (in terms of LOC/hr.) than
distributed teams that do not pair synchronously.

• Distributed teams who pair synchronously will have
comparable productivity and quality when compared
with co-located teams.

• Distributed teams who pair synchronously will have
better communication and teamwork within the team
when compared with distributed teams that do not pair
synchronously.

The Experimental Procedure
The experiment was conducted in a graduate class, Object-
Oriented Languages and Systems, taught by Dr Edward
Gehringer at North Carolina State University. The course
introduces students to object technology and covers
OOA/OOD, Smalltalk, and Java. At the end of the semester,
all students participate in a 5-week long team project. We
chose this class for our experiment for the following reasons:

1. The projects were developed using an object-oriented
language.

2. The experiment had to be performed on a class that had
enough students to partition into four categories and
still have enough teams in each category to draw
conclusions.

3. We needed some distance-education participants for the
class to make distributed development feasible and
attractive.

The class had 132 students, 34 of whom were distance
learning (Video-Based Engineering Education) �VBEE�
students. The VBEE students were located throughout the
US, often too far apart for co-located programming or even
face-to-face meetings. The team project counted for 20% of
their final grade. The on-campus students were given 30
days to complete the project (VBEE students had 37).

Teams were composed of 2�4 students. The students self-
selected their teammates, either in person or using a message
board associated with the course, and chose one of the four
work environments listed below.

1. Colocated team without pairs (9 groups)
The first set of teams developed their project in the tradi-
tional way: group members divided the tasks among them-
selves and each one completed his or her part. An
integration phase followed, to bring all the pieces together.

2. Colocated team with pairs (16 groups)
The next set of groups worked in pairs. Pair programming
was used in the analysis, design, coding and testing phases.
A team consisted of one or two pairs. If there were two
pairs, an integration phase followed.

The next two environments consisted of teams that were
geographically separated � �virtual teams.� These groups
were either composed entirely of VBEE students, or a
combination of VBEE and on-campus students.

3. Distributed team without pairs (8 groups)
The third set of teams worked individually on different
modules of the project at different locations. The contribu-
tions were combined in an integration phase.

4. Distributed team with pairs (5 groups)
This fourth set of teams developed the project by working in
pairs over the Internet. At the end, they integrated the
various modules. They worked with the PC-sharing platform
we detailed earlier.

In order to record their progress, the students used Bryce [5],
a Web-based software-process analysis system used to record
metrics for software development. Using this tool, the
students recorded data including their development time,
lines of code and defects. Development time and defects
were recorded for each phase of the software development
cycle, namely, planning, design, design review, code, code
review, compile and test. Using these inputs, Bryce
calculated values for the metrics used to compare the four
categories of group projects.

The two metrics used for the analysis were productivity, in
terms of lines of code per hour; and quality, in terms of the
grades obtained by the students for the project. Additionally,
after the students had completed their projects, they filled out
a survey regarding their experiences while working in a
particular category, the difficulties they faced, and the things
they liked about their work arrangement.

EXPERIMENTAL RESULTS
Data were analyzed in terms of productivity and quality, as
defined above. Also, student feedback formed an important
third input for the experiment. Our goal was not to show that
distributed pair programming is superior to co-located pair
programming for student teams. Our goal was to demon-
strate that distributed pairing is a viable and desirable
alternative for use with student teams, particularly for
distance education students. We plan to repeat this exper-
iment in the Fall 2002 semester to build up a larger base of
results.

Productivity
Productivity was measured in terms of lines of code per hour.
Average lines of code per hour for the four environments are
shown in Figure 1.

Lines of code per hour

0

5

10

15

2 0

2 5

Non-pair
colocated

Pair
colocated

Non-pair
distributed

Pair
distributed

Figure 1

The results show that distributed teams had a slightly greater
productivity as compared to colocated teams; however, the f-
test for the four categories shows that results are not
statistically significant (p < 0.1), due to high variance in the
data for distributed groups. This is better depicted by the
box plot (Figure 2) for the four categories, which illustrates
the distribution of the metric for the four environments.

Figure 2

A box plot shows the distribution of data around the median.
The vertical rectangle for each category shows the
distribution of the middle 50% of the readings. The
horizontal line inside each rectangle shows the median value
for that particular category. The line segment from the top of
the rectangle shows the range in which the top 25% of the
values lie. Similarly, the line segment below the rectangle
shows the range in which the bottom 25% of the values lie.
Thus, the ends points of the two line segments indicate the
total range that the values for a particular category fall into.
For example, the median for the non-pair colocated category
is around 10 LOC/hr., with the middle 50% of the values
lying between approximately 9 and 13 LOC/hr., while the
entire range is between 5 and 35 LOC/hr., approximately.

If the comparison is restricted to the two distributed
categories, a statistical t-test on the two categories shows that
this difference is not statistically significant. In terms of
productivity, the groups involved in virtual teaming (without
pairs) is not statistically significantly better than those
involved in distributed pair programming. In other words,
teams involved in distributed pair programming are not
shown to be worse in terms of productivity than those
forming virtual teams without distributed pair programming.

Quality
The quality of the software developed by the groups was
measured in terms of the average grade obtained by the
group out of a maximum of 110. The graph below indicates
that the performance of students did not vary much from one
category to another.

Grades

0

20

40

60

80

100

120

Non-pair
colocated

Pair colocated Non-pair
distributed

Pair distributed

A
ve

ra
ge

 S
co

re

Figure 3

A box plot for the grades only corroborates the claim made
above. Although nothing statistically significant can be said
about the grades for the four categories, it is interesting to
see that those teams performing distributed pair
programming were very successful in comparison to other
groups. The results of the statistical tests indicate that teams
involved in virtual teaming were not significantly better than
the distributed teams using pair programming, in terms of
grade.

Figure 4

Student Feedback
Productivity and product quality is important. However, we
also ran a survey to assess students� satisfaction with their
working arrangement. Five out of the six students involved
in distributed pair programming thought that technology was
not much of a hindrance in collaborative programming.
Also, 23 out of 28 students involved in virtual teaming with
or without pair programming felt that there was proper
cooperation in the team, meaning that the technical platform
provided the facilities needed.

A COMPREHENSIVE ENVIRONMENT FOR
DISTRIBUTED PAIR PROGRAMMING

We now shift focus from the experiment we have completed
with a simple technology base to a description of the more
comprehensive collaboration support environment we are
constructing for DXP. Based on the results of earlier
investigations into remote work systems and tele-presence,
we are constructing a pair-programming station that will use
hypermedia-augmented video projection to give the
collaborators a better sense of �being there� while
developing software jointly. We first give some background
on previous research in this area, and then describe the
hardware and software components of our DXP
environment.

�Office of Real Soon Now� and VideoWindow

Even with the remarkable graphics technology available at
the high end of virtual reality systems, much remains
unchanged from Englebart�s early prototype. The dominant
paradigm of human-computer interaction in the workplace �
a single user sitting in front of a single display with limited
resolution and a WIMP interface, attached to a single
computer � remains in force and has become a barrier to
effective communication and collaboration for group
interactions. The research we are doing is trying to break
that barrier with relatively simple technology, compared to
the systems just described.

We are building a more effective collaborative environment
for pair programming using the results of some simple wall-
size display experiments at UNC [28,29]. Whimsically
termed the �Office of Real Soon Now� (a play on the name
of the �Office of the Future�), it aims to get some of the
benefits of large screens without waiting years and spending
large amounts money. In this project, Bishop and Welch
have produced double-width wall-sized displays for their
offices using COTS projectors, video cards, and PCs. For
their experiments they completely abandoned CRT displays
and used only projected wall displays; after 3 years neither
has any intention to return to CRTs. Benefits of the large
wall displays include greatly reduced eye-strain; better
interaction capabilities with students when discussing joint
work; and expanded screen real-estate. Their experiments
have concentrated on individual and co-located group use of
the wall display technology, and have not involved
networked collaborations.

Just as the �Office of Real Soon Now� seeks to have large-
display benefits well in advance of the Office of the Future,
we seek the �real soon now� benefits for distributed pair
programming by using inexpensive COTS projection
equipment, and ubiquitous PCs. The design of our DXP
environment employs the principles uncovered at BellCore in
the VideoWindow project [30]. In this experiment, two
rooms in different buildings at BellCore (coffee lounges)
were outfitted with video cameras and wall-sized projections.
In essence, an image of one lounge was sent to the other and
projected on the back wall, giving the illusion in each room
of a double-size coffee lounge. The researchers discovered
that many users found the setup to be very natural for human
communication, due to its size. Two people, one in each
room, would approach the wall to converse, standing a
distance from the wall that approximated the distance they
would stand from each other in face-to-face conversations.

Figure 5: DXP Collaborative pair programming setup

The DXP Environment
Our current experiments in distributed pair programming
between UNC and NCSU have shown that programmer
communication via a 19� to 21� display, while effective
enough to allow development of good software, result in
interactions that are somewhat stiff and limited in scope.
The pairs so far have been given tools that support video
interactions via webcam and postage-stamp-sized video
windows. After initially turning the cameras on along with
the shared PC and the audio, all pairs soon turned the
cameras off to enhance performance. They reported that the
video was too small to provide them with any
communications enhancements.

We believe a far more effective collaborative environment
can be created with a wall-sized display produced by
projectors, and that a corresponding improvement in
distributed pair programming will result from this enhanced
video support for collaboration.

The equipment package needed for one office is:

• High-resolution video projector2 (2)

• Firewire camera + PCI video capture card (1)
• PC video card to handle two screens seamlessly (1)
• wiring, cable, microphones, screen boards, etc.

The cost for a single office is about $8,000. We are working
with four packages, outfitting two offices at each of the two
research sites (UNC-CH and NCSU). This arrangement
allows �local� distributed pairing at each site over the LAN,
as well as pairing across sites with a wider-area network.
Each office has two projectors. One is primarily used for
video display of the remote collaborator. The other is for
display of the shared computer �screen.� We are starting
with an L-shaped screen setup, with the collaborator video
image to the side of the programmer and the computer
display to the front. We have placed the camera next to the
projection wall rather than on the workstation in order to
present each user with a view the other�s office, with a side-
view of the collaborator in the foreground. We will
experiment later with different user placements and screen
arrangements.

Figure 5 shows half the setup at UNC. Visible are the two
projectors pointed at right angles to each other, and one of
the screens. As the developer sits, he sees the shared PC
desktop projected ahead, and the collaborator projected to
the left. To communicate with the collaborator the developer
turns to the left and speaks to the screen. The camera
location with the screen gives a nice impression of the pair
being face-to-face. This mimics the head movement needed
to look at one�s pair programmer when working co-located.

We are working to eventually mix the video imagery
(allowing the collaborators to see each other) with digital
display information (the source code being developed), but
for the first realization we use one projector for PC display
and one for camera/video display. Communication is via
directional microphones placed in the vicinity of the
workstations, so the participants will not be encumbered with
headsets. Two distributed collaborators interact much like
they do with local pairing; to talk, one will turn to the other
(face the projection wall) and speak openly in the room.
Since the camera is on the projection wall, the remote
collaborator will have the impression that the communicator
is looking at him or her. Each will see surrounding context
and an image of significant size. The illusion created is a
�joint office� with the video walls, much like the virtual
coffee lounge of BellCore�s project VideoWindow mentioned
previously.

Software Platform: Video with hyperlinking

In addition to this hardware environment, we are developing
for DXP software tools to more effectively support
interaction between distributed pair programmers while
developing programming project artifacts

As experiments progress, we will seek to identify areas in
which collaboration among the programming pairs would
benefit from software support and to build any shared artifact
tools we may need (editors, inspection tools, etc.). Our first
experiments, though, are to determine the effectiveness of the
simplest approaches, using the observation made earlier that
simple technology often reaps large benefits. Thus our first

experiments have been with a single virtual PC obtained via
NetMeeting, on traditional PCs. NetMeeting provides not
only a shared desktop, but audio communications as well.

One novel aspect of the DXP software environment is
integration of the video stream from the camera with
OvalTine, a hypermedia tool we developed at UNC to allow
embedding of hyperlinks in video streams. In the section
following we give an overview of the structure and image
analysis techniques used in OvalTine to do video
hyperlinking.

Having hyperlinking capabilities in the DXP video widow
gives collaborators unique tools for organizing software
development. Potential uses include creating hyperlinks off
words on the collaborator�s whiteboard, effectively making
the video image a virtual page. A user can also attach a
notepad to the collaborator herself (the face), so that ideas
needing discussion can be noted as they are thought of; when
pairs switch, face recognition software will allow the
previously annotated information to be retrieved via a mouse
click on the collaborator�s face. Another possible use is
linking programmers� images to the code they have most
recently worked on, or are responsible for. Such a use would
exploit the reason OvalTine was created -- to allow video
streams to be properly integrated with textual and image-
based hypermedia documents (i.e., web pages and databases).

OvalTine allows hyperlink annotations in both real-time
streams and in stored video. The later capability means that
for study of DXP itself, the video window can be captured,
archived, and then marked up with hyperlinks via OvalTine.
Researchers studying the collaborators will be able to form
video webs from the various DXP sessions. We are sure
there are other uses for hyperlinks that the programming
pairs will discover during experimentation when the
OvalTine-enhanced DXP environment is fully online.
OVALTINE: HYPERLINKED REAL-TIME VIDEO

One of the problems keeping video from being a fully first-
class data component of hypermedia documents is the
difficulty of treating the objects depicted in video as
identifiable, linkable content. Rather, video tends to be
manipulated as frames of pixels with no further subdivisions.
When link markup is done on video streams, it is done
manually frame-by-frame. We have been working with
OvalTine, a system for tracking objects in video streams so
that hypermedia link anchors can be associated with the
objects in the video frames. The OvalTine tracking system
can be used to do automated link markup of video streams.
While our previous work with OvalTine presented object
tracking in real-time streams [31], we have recently
developed extended techniques for markup of stored
(archived) data. Our results allow hypermedia structure to be
generated and added to large digital libraries of video data.

Every current popular method for adding active regions to
video requires manual selection of video objects, on a frame-
by-frame basis. No research efforts in automation have yet
made it into common practice in a widely used system such
as those from Apple (QuickTime, [32]). By contrast, an
automatable object tracking system is much more desirable,

both for real-time applications, and for the automated
addition of hyperlinks to the vast amount of archived video
currently in existence.

A good overview of the issues and technologies in current
hypervideo systems can be found in class notes at Texas
A&M [33]. In the terms defined in this taxonomy, we are
working on a system for automatically specifying mostly
spatio-temporal links in hypervideo. Hypercafe [34] is often
cited in hypervideo discussions; however, it is a presentation
system mostly and does not support the dynamic and
automatic link anchor creation we are exploring in OvalTine.
The Multimedia Systems Lab at IISc India is doing work on
object tracking in MPEG streams [35]. This project seems
similar in scope and goals to OvalTine. They are tracking
object in an MPEG stream, where as OvalTine is architected
to be modular and extensible to define tracking and linking
concepts at an abstract level, and to be applicable to different
image and video formats with minimal extensions. Most
other systems, however, that apply to hypervideo involve
manual anchor creation when authoring hypervideos.

Two tracking modes

We have previously reported on the OvalTine system [31]
and discussed the various distributed system architecture
issues involved in storing and serving video hyperlinks in a
client/server implementation. This section presents our
continuing work with the system, demonstrating the use of
the basic real-time image tracking algorithms for use in
automated markup of stored video data. In the terms of the
taxonomy we outlined in [31] this is a Server/Archived
scenario, and we have chosen to implement a Manual object
selection scheme.

In our initial OvalTine implementation, we demonstrated
real-time tracking of faces in live video streams, such as the
one from the collaborator camera in the DXP environment
(an example of real-time videoconferencing). This tracking
allows hypermedia link anchors to be associated with objects
in the video window, creating a first-class hypermedia
capability for video data. The face in the video frame
becomes a live link, a selectable target for the user to click
on to trigger some action. As the face moves around the
video screen, the live target area moves with it, providing the
illusion that the face itself is the hyperlink anchor. The
target is optionally made visible by means of a simple
highlight oval that moves with the face. Clicks within the
oval count as a click on the face, and the enveloping
hypermedia layer follows the link associated with the face.
The links targets are URLs entered when the object is first
selected as a link anchor (at the initiation of tracking);
selecting one triggers the display of a web browser window
with the proper URL loaded.

We have developed a second, equally important use for the
OvalTine technology � automating the addition of link
markup to stored (non-real-time) video data. There is
increasing interest in video data being incorporated in
hypermedia structures (which we will hereafter refer to as
hypervideo data). Digital libraries are growing in popularity
and scope, and video is an important component of such

archives. All major news services have vast video archives,
valuable �footage� that would be of use in education,
historical research, even entertainment. As noted earlier, the
current best practices for link markup in video require
completely, or considerably, manual markup of the video
frames with the active, or hot, areas that serve as link anchors
in hypervideo data. Broad access to vast caches of stored
video �footage� will only be possible with automated link
markup methods.

Figure 6. OvalTine tracker interface

We do not specify to what a link anchor may refer, nor do we
limit the type of objects that may be designated as a link
anchor. The goal of our work is to explore the creation and
maintenance of hyperlinks in video streams, and to automate
these procedures as much as possible.

User Interface Examples: Ovals, trackers, sprites,
links, and multi-links

OvalTine is set up to allow link markup of stored video as an
editing task. Figure 6 shows the video display window, the
properties window, and the URLs window. The video
display window presents the video data and shows the
tracked objects as (optionally) outlined ovals. For real-time
applications, such as video conferencing, the playback
controls are inoperative. For markup of stored video, the
user can do the standard start, stop, pause, and slider frame
selection operations on the video stream.

The tracking properties window allows the user to select the
type(s) of tracking algorithms to apply to the video frames.
OvalTine�s architecture has been structured to allow multiple
tracking algorithms to be chained together and applied in
sequence. A user can even apply a different chain of trackers
to each different oval if desired; OvalTine spawns a separate
tracking thread for each oval. Some trackers work better
than others in varying images; the selection of specific
trackers to use depends on image properties such as color
variability, background complexity, object motion, texture,
etc.

Once a link anchor (oval) has been established in the video
window, the user can associate one or more URLs with that
anchor to be targets of the link(s). These URLs show up in

the URL window in the lower left. Figure 6 shows one URL
for each oval, and the association is made by the color of the
tag. For real-time links, mouse events are trapped in the
video window, and the tracker information is used directly
for the current frame to determine which stored URL is to be
activated.

Stored video has an extra layer atop the base video data.
During markup, the video stream is played and tracked as if
in real-time. The areas that the trackers identify as active
link anchors in each frame are captured and stored in a Sprite
layer for Apple Quicktime [32]. OvalTine then uses
Quicktime to overlay the hotspot layer onto the video image
during playback, and traps mouse clicks in these areas for
processing through the associated URL information in
OvalTine�s data store.

To edit, the user selects a starting frame with the slider
controls, and then designates one or more objects to be
tracked. The video is started with the �track� button, and the
tracker chain for each oval causes the link anchors to follow
the objects as they move in the video frame. The sprite
infrastructure captures the layout information needed to
maintain the link anchors in association with the video data.
At any point the user may pause the video, add or delete
ovals, and continue with tracking.

URLs can be added to the tracked objects at any point, either
during tracking, or during playback editing of the marked-up
video data. Though not shown, ovals can be linked to any
first-class Web data, including another OvalTine video clip.
There is also a �lost� link palette (not shown) that collects
the URLs associated with objects that are being tracked, but
move out of the video window. Any URLs associated with
such an object are taken out of the URL window and saved
in the �lost� list. This is a convenience that makes it easier
for the user to re-associate these URLs if the tracked object
should reappear in the video window and need to be tracked
again.

Figure 7. OvalTine application showing marked up video

stream

Figure 7 shows OvalTine in use while viewing a marked-up
video stream. Here we see a CNN clip where the face of the
reported has been annotated with 2 different links. One link
is to the CNN home page (seen displayed in the background).
The other link is to an article and map on Pakistan, which is
the topic of the video; this page is shown in the foreground.

CONCLUSIONS
The results of our experiment indicate the following:

• Pair programming in virtual teams is a feasible way of
developing object-oriented software.

• Pair programming in colocated teams is a feasible way
of developing object-oriented software.

• Software development involving distributed pair
programming seems to be comparable to colocated
software development in terms of the two metrics,
namely productivity (in terms of lines of code per hour)
and quality (in terms of the grades obtained).

• Colocated teams did not produce statistically
significantly better results than the distributed teams.

• The feedback given by the students indicates that
distributed pair programming fosters teamwork and
communication within a virtual team.

Thus, the experiment is a first indication that distributed pair
programming is a feasible and efficient method for dealing
with team projects.

The successes of our simple DXP platformn has led us to
construct one that presents collaborators with a more
significant video image, including the ability to create
hyperlinks in a real-time video stream. Follow-on
experiments in distributed pair-programming will be
conducted using this video-enhanced DXP environment.

ACKNOWLEDGMENTS

We would like to thank NCSU undergraduate student Matt
Senter for his help in administering this experiment. The
support of Intel in providing equipment is graciously
acknowledged. We would also like to thank NCSU graduate
student Vinay Ramachandran for developing the tool called
Bryce to record project metrics.

This work was also supported with funds from NSF grant
9732577 and EPA grant R82-795901-3 to the Univ. of North
Carolina, as well as equipment from IBM.

REFERENCES

[1] L. A. Williams, �The Collaborative Software Process
PhD Dissertation�, Department of Computer Science,
University of Utah. Salt Lake City, 2000.
[2] J. T. Nosek, �The case for collaborative programming�,
Communications of the ACM 41:3, March 1998, p. 105�108.
[3] S. P. Foley, �The Boundless Team: Virtual Teaming�,
http://esecuritylib.virtualave.net/virtualteams.pdf, 2000
Master of Science in Technology (MST) Graduate
Symposium, Northern Kentucky University.

[4] D. Gould, �Leading Virtual Teams�, Leader Values,
http://www.leader-values.com/Guests/Gould.htm. July 9,
2000.
[5] http://bryce.csc.ncsu.edu/tool/default.jsp
[6] L. A. Williams, and R. Kessler, �Pair Programming
Illuminated�, Boston, MA: Addison Wesley, 2002.
[7] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries,
�Strengthening the case for pair-programming�, IEEE
Software 17:4, July/Aug 2000, pp. 19-25.
[8] A. Cockburn, and L. Williams, �The costs and benefits of
pair programming�, Extreme Programming Examined, Succi,
G., Marchesi, M. eds., pp. 223-248, Boston, MA: Addison
Wesley, 2001

[9] B. George., Y. M. Mansour, �A Multidisciplinary
Virtual Team�, Accepted at Systemics, Cybernetics and
Informatics (SCI), 2002.
[10] Beck, K., Extreme Programming Explained, Addison-
Wesley, 2000.
[11] Wells, J. D., �Extreme Programming: A Gentle
Introduction,� 2001, available on-line at
http://www.extremeprogramming.org/
[12] Beck, K., and Gamma, E., � JUnit Test Infected:
Programmers Love Writing Tests,� Java Report, July 1998,
Volume 3, Number 7. Available on-line at:
http://JUnit.sourceforge.net/doc/testinfected/testing.htm
[13] Beck, K., and Gamma, E., �JUnit A Cook�s Tour,� Java
Report, 4(5), May 1999. Available on-line at:
http://JUnit.sourceforge.net/doc/cookstour/cookstour.htm
[14] Fowler, M., Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999.
[15] D. C. Engelbart and W. K. English, �A Research Center
for Augmenting Human Intellect,� presented at AFIPS
Conference Proceedings of the 1968 Fall Joint Computer
Conference, San Francisco, CA,, 1968.
[16] L. Brothers, V. Sembugamoorthy, and M. Muller,
�ICICLE: Groupware for code inspection,� presented at
Proc. of Computer Supported Collaborative Work, Los
Angeles, 1990.
[17] S. Conklin and M. Begeman, �gIBIS: A hypertext tool
for team design deliberation,� presented at Proc. of ACM
Hypertext '87, Chapel Hill, NC, 1987.
[18] R. Furuta, P. D. Stotts, �Petri Net Based Hypertext:
Document Structure with Browsing Semantics,� ACM Trans.
on Information Systems (ACM), vol. 7, pp. 3-29, January
1989.
[19] M. Capps, B. Ladd, and D. Stotts, �Enhanced Graph
Models in the Web: Multi-client, Multi-head, Multi-tail
Browsing,� Computer Networks and ISDN Systems, vol. 28,
pp. 1105-1112, 1996.
[20] J. Navon, �Specification and Semi-Automated
Verification of Coordination Protocols for Collaborative
Software Systems Ph.D. Thesis,� in Department of Computer
Science. Chapel Hill, NC: University of North Carolina,
2001.

[21] P. D. Stotts, R. Furuta, and C. R. Cabarrus,
�Hyperdocuments as Automata: Verification of Trace-based
Browsing Properties by Model Checking,� ACM Trans. on
Information Systems, vol. 16, pp. 1-30, January 1998.
[22] D. Jones, �What is a CAVE TM?,� , pp.
http://www.sv.vt.edu/future/vt-cave/whatis/, 1999.
[23] MIT, �DataWall: Seamless, full motion ultrahigh
resolution projection display,� pp.
http://vlw.www.media.mit.edu/groups/vlw/DataWall-
overview.htm, 2000.
[24] UMN, �Welcome to the PowerWall,� , pp.
http://www.lcse.umn.edu/research/powerwall/powerwall.htm
l, 1998.
[25] H. Takemura and F. Kishino, �Cooperative Work
Environment using Virtual Workspace,� presented at Proc.
of CSCW '92, Toronto, 1992.
[26] H. Ishii, M. Kobayashi, and J. Grudin, �Integration of
inter-personal space and shared workspace: ClearBoard
design and experiments,� presented at Proc. of CSCW '92,
Toronto, 1992.
[27] H. Fuchs, �The Office of the Future,� pp.
http://www.cs.unc.edu/~raskar/Office/.
[28] G. Bishop, , pp. http://www.cs.unc.edu/~gb/office.htm,
The Office of Real Soon Now.
[29] G. Bishop and G. Welch, �Working in the Office of
'Real Soon Now',� IEEE Computer Graphics and
Applications, pp. 76-78, July/August 2000.
[30] R. S. Fish, R. E. Kraut, and B. L. Chalfonte, �The
VideoWindow System in Informal Communications,�
presented at Proc. of CSCW '90, Los Angeles, 1990.
[31] Smith, J., D. Stotts, and S.-U. Kum, "An Orthogonal
Taxonomy for Hyperlink Anchor Generation in Video
Streams using OvalTine," Proc. of Hypertext 2000 (ACM),
May, 2000, San Antonio, Texas, pp. 11-18.
[32] Apple Computer, �Introduction to Wired Movies,
Sprites, and the Sprite Toolbox�,
http://developer.apple.com/techpubs/
quicktime/qtdevdocs/REF/refWiredIntro.htm
[33] Francisco-Revilla, L., �A Picture of Hypervideo
Today�,http://www.csdl.tamu.edu/~l0f0954/academic/cpsc61
0/p-1.htm, 1998.
[34] Sawhney, N., D. Balcom, and I. Smith, �HyperCafe:
Narrative and Aesthetic Properties of Hypervideo�,
Hypertext �96 Proceedings, ACM, Washington, D.C., 1996,
pp. 1-10.
[35] Multimedia Systems Lab at IISc, �Object tracking and
hypervideo�,http://serc204a.serc.iisc.ernet.in/research
/track.htm

