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ABSTRACT 
Previous research [1, 2] has indicated that pair programming 
is better than individual programming when the pairs are 
physically colocated. However, important questions arise: 
How effective is pair programming if the pairs are not 
physically next to each other?  What if the programmers are 
geographically distributed?  An experiment was conducted to 
compare the different working arrangements of student teams 
developing object-oriented software.  The teams were both 
colocated and in distributed environments; some teams 
practiced pair programming while others did not.  The results 
of the experiment indicate that it is feasible to develop 
software using distributed pair programming, and that the 
resulting software is comparable to software developed in 
colocated or virtual teams.  Our early experiments have led to 
the creation of a more comprehensive environment for 
support of distributed pair programming, using dual screen 
projectors and hymermedia-enhanced video streams. Our 
findings will be of significant help to educators dealing with 
team projects for distance-learning students, as well as 
organizations that are involved in distributed development of 
software. 

Keywords 
Extreme Programming, XP, pair programming, collaborative 
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PAIR PROGRAMMING, XP, AND DISTRIBUTED 
COLLABORATION 

Increasingly, programmers are working in geographically 
distributed teams.  Escalating trends in teleworking, distance 
education, and globally distributed organizations are making 
these distributed teams an absolute necessity.  These trends 
are beneficial in many ways, particularly for those in 
geographically disadvantaged areas.  However, it is not 
believed that any of these arrangements makes a programmer 
more effective than if all the programmers were, indeed, co-
located.  Therefore, organizations must strive to maximize 
the efficiency and effectiveness of these unavoidably 
distributed programmers and teams.       

This paper describes the development and study of a 
technique tailored for distributed programming teams.  The 

technique is based on an emerging software engineering 
methodology known as pair-programming combined with 
nearly 20 years of widespread and active research in 
collaborative software systems.  We aim to show that 
geographically distributed programmers benefit from using 
technology to collaborate synchronously with other 
programmers.  Our objective is to demonstrate that the 
geographically distributed programmers who collaborate 
synchronously with other programmers will outperform 
geographically distributed programmers who work 
independently. 
 
Professional interest in pair programming has risen 
dramatically in recent years with the success of an agile 
software development process called Extreme Programming, 
or XP [10,11] developed by Kent Beck.  XP is distinguished 
from more traditional development processes by emphasizing 
(even requiring)  

• pair programming 
• test-first code development at the unit level 
• full regression test support (with JUnit [12,13]) 
• lack of up-front detailed design 
• frequent code refactoring [14] 
• on-site client 
• expectation of requirements changes. 

 
XP practitioners develop requirements conversationally with 
the client, and deliver frequent working prototypes for 
feedback and changes.  No code is written unless it is needed 
(no programming for the �perhaps� future), and when a 
design grows to the point that it feels unwieldy it is 
refactored and re-architected before further extension. The 
process is best known, though, for pair programming, which 
is at the heart of the productivity increases many XP teams 
are seeing. 
 
Anecdotal and statistical evidence indicate that pair-
programming two programmers working side-by-side at 
one computer, collaborating on the same design, algorithm, 
code or test is highly productive. Cockburn and Williams 
have produced statistical results that show pair-programmers 
produce higher-quality products in essentially half the 
elapsed time as individual programmers [8].  We believe the 
pair-programming model can be modified for distributed 



collaborative development, and that we will see similar 
benefits.     
 
To evaluate the effectiveness of distributed pair 
development, we are running controlled empirical studies 
involving students at North Carolina State University and the 
University of North Carolina at Chapel Hill.  Students use 
interactive information technology over the Internet, such as 
PCAnywhere and NetMeeting, to jointly and simultaneously 
control a programming session and to speak with each other 
synchronously. Our early experiments have led us to develop 
the more video-enhanced environment described in the 
second half of this paper to support the remote synchronous 
collaboration required in DXP software development. 

 
PREVIOUS WORK 

Pair Programming 
Pair programming is a style of programming in which two 
programmers work side by side at one computer, continu-
ously collaborating on the same design, algorithm, code or 
test.  One of the pair, called the driver, is typing at the 
computer or writing down a design.  The other partner, called 
the navigator, has many jobs.  One of the roles of the 
navigator is to observe the work of the driver, looking for 
tactical and strategic defects in the work of the driver.  
Tactical defects are syntax errors, typos, calls to the wrong 
method, etc.  Strategic defects are said to occur when the 
team is headed down the wrong path � what they are 
implementing won�t accomplish what it needs to accomplish.  
Any of us can be guilty of straying off the path.  A simple, 
�Can you explain what you�re doing?� from the navigator 
can serve to bring the driver back onto the right track.  The 
navigator has a much more objective point of view and can 
better think strategically about the direction of the work.  The 
driver and navigator can brainstorm on demand at any time. 

  An effective pair-programming relationship is very active.  
The driver and the navigator communicate at least every 45 
seconds to a minute.  It is also very important for them to 
switch roles periodically.  Note that pair programming 
includes all phases of the development process � design, 
debugging, testing, etc. � not just coding.  Experience 
shows that programmers can pair at any time during 
development, in particular when they are working on 
something that is complex.  The more complex the task is, 
the greater the need for two brains [1, 6].   

Controlled studies have shown that pairs finish in about half 
the time of individuals and produce higher quality code.  The 
technique has also been shown to assist programmers in 
enhancing their technical skills, to improve team 
communication, and to be more enjoyable [1, 6, 7, 8].   

Virtual Teaming 
A virtual team can be defined as a group of people, who 
work together towards a common goal, but across time, 
distance, culture and organizational boundaries [9].  In our 
context the goal is development of software.  The members 
of a virtual team may be located at different work sites, or 
they may travel frequently, and need to rely upon 
communication technologies to share information, 

collaborate, and coordinate their work efforts. As the 
business environment becomes more global and businesses 
are increasingly in search of more creative ways to reduce 
operating costs, the concept of virtual teams is of paramount 
importance [3]. 

A primary consideration in virtual teaming is that of 
communication [4]. Poor communication can cause problems 
like inadequate project visibility, wherein everyone does 
his/her individual work, but no one knows if the pieces can 
be integrated into a complete solution.  Coordination among 
the team members could also be a problem.  Finally, the 
technology used must be robust enough to support distribu-
ted development of software, not just to provide 
communications. 

The experiments we ran used virtual teams of two kinds.  
One kind was developing software in traditional, individual 
programmer style, and thus needed primarily 
communications support for integration of work; the other 
was developing software using the technical approach of 
pair-programming, where it is essential for proper 
collaboration that each team member have the illusion of 
sharing a single PC in real-time, synchronously. 

Collaborative systems and distributed workgroups 

The earliest example of a collaborative computer system was 
NLS-Augment by Engelbart [15], an initial version of which 
was demonstrated in the early 1960�s.  Engelbart�s system 
used shared CRTs, audio connections, mouse, and keyboard 
to allow crude teleconferencing and shared examination of 
text files by users who were not co-located. From these early 
beginnings, collaborative software systems became the 
subject of widespread research more than 15 years ago, with 
the creation of the PC.  Ongoing research tends to focus in 
three main areas: hardware to provide effective 
communications; software concepts that allow sharing of 
artifacts; and conceptual models of how people want to � or 
are able to � interact effectively. 
 
Many collaborative system ideas developed in research labs 
have now found their way into practice, and we are seeing 
commercially viable products and services for supporting 
collaboration.  These products are used to create virtual 
workplaces and allow people around the world to work on 
coordinated group efforts.  The most commonly used 
collaborative tools are �chat rooms�.  Though simple in 
technical terms, chat rooms� wide usage demonstrates that 
simple technology can be used very effectively.  Many 
commercial vendors support chat servers for exchange of 
text, audio, and video streams (Yahoo, Excite, PalTalk, and 
Microsoft to name a few) and hundreds of thousands of 
people use these services.  Most usage of chat servers is for 
social interactions like game playing, but they are also used 
to support businesses.  We repeat that simple technology 
often gets you large gains. 
 
Shared software artifacts 
 
Numerous researchers have developed software for 
supporting human interactions within shared artifacts.  These 



include general systems, like shared whiteboards for 
drawing, and shared editors for documents and multi-media 
streams. They also include special-purpose systems like 
ICICLE [16] for code inspection and review, and gIBIS for 
design review and logical argument construction [17]. Trellis 
[18] and MMM [19] are two systems for collaborative 
hypermedia and Web browsing.  Trellis was built on the idea 
of structuring a hyperdocument as an abstract parallel 
process specification, allowing group interaction on the 
document to be defined in the document link structure.  
MMM extended this idea by extracting the process definition 
out of the document and allowed the group interaction rules 
(collaboration protocol) to be dynamically defined (as 
opposed to being hard-wired in the source code).  In this 
way, group interactions can be developed and changed 
without changing the MMM software.  Further research has 
led to methods for verifying the correctness of collaboration 
protocols [20,21].   
 
In the experiments we have done, the shared artifact is, at the 
lowest level, the entire PC screen.  We wanted to explore the 
technological feasibility of distributed pair programming 
with the simplest of technical structure.  Thus we chose not 
to experiment with shared artifacts at the code or document 
level, allowing the programmers to work in pairs with exactly 
the same tools they use when programming alone. 
 
Hardware and graphics for collaborations 
 
Many of the most visible developments in collaborative 
systems have come from computer graphics.   While their 
display technologies have remarkable sophistication in their 
visual imagery, most of them do not support distributed 
collaborations. The CAVE [22] is a multi-person, room-
sized, high-resolution, 3D video and audio environment 
developed at the University of Illinois at Chicago. It 
functions as virtual reality theater, made up of three rear-
projection screens for the front, right and left walls and a 
down-projection screen for the floor.  Multiple users may sit 
in the space, wearing special glasses to decode the stereo 
projections. The CAVE is state-of-the-art in terms of visual 
impact and virtual reality presentation; it is limited in 
distributed collaboration support as it requires all 
participants to be present in the same space in order to work 
together. The DataWall [23] at MIT and the PowerWall [24] 
at the University of Minnesota are similar large display 
projects. The primary purpose of these large displays is to 
visualize and display very high-resolution data, often from 
large scientific simulations performed on supercomputers or 
from high resolution imaging applications. The large display 
areas allow small groups of collaborators to see the display 
clearly and without obstruction.  It is possible to walk up to 
the display and point to features of interest, just as one would 
do while discussing work at a blackboard.   However the 
emphasis is on graphics clarity, and not remote collaboration. 
 
Unlike the previously mentioned display projects, Virtual 
WorkSpace [25] was intended as an environment to enable 
distributed collaboration over a network. It depends heavily 
on computer-generated graphics and virtual reality devices as 
well.  ClearBoard [26] was similarly a non-co-located 

collaboration support system that allowed two users to 
appear to sit face to face, and see the shared work between 
them; emphasis was placed on drawing applications.  The 
system required special hardware (the clear screen), and was 
not built with COTS technology (as is our environment). 
Experiments using ClearBoard showed that increased eye 
contact and the sense of presence of the remote collaborator 
was important in providing effective work performance. 

The Office of the Future project [27] at UNC, under the 
direction of Henry Fuchs, seeks to combine network-based 
collaboration with the superior graphics and image 
manipulation capabilities of virtual reality systems.  It is a 
long-term project that will not be generally usable for years 
and it will require expensive special-purpose support 
hardware and high-performance graphics engines. 
 

INITIAL PLATFORM EXPERIMENT 

An initial experiment was done in early fall 2001 between 
NCSU and UNC to determine an effective technical platform 
to allow distributed pair programming.  We wanted to use 
simple COTS technology � something that would be readily 
available to anyone � rather than research projects or 
platforms. Two pairs of programmers worked over the 
Internet to develop as a 4-person team a modest Java gaming 
application; each pair was composed of one programmer 
from each remote site.  The team developed a Mancala game, 
with GUI, in 8 sessions that varied from 1 to 2 hours in 
length.  In addition to the actual pair programming sessions, 
the project was initiated with a face-to-face meeting in which 
the team members agreed on requirements and an overall 
system metaphor.  Thus the experiment mainly tested the 
effectiveness of the technology for pair coding and not the 
entire software development process. 

The members of a pair viewed a common PC display using 
desktop sharing software; we trailed Microsoft NetMeeting, 
Symantec�s PCAnywhere, and VNC.  They used headsets 
and microphones to speak to each other, and text chat for 
communications as well.  We trailed several instant-
messaging programs (Yahoo Messenger, PalTalk, AOL 
Messenger) before implementing the project.   The final 
experiment was run with NetMeeting, as this program 
provided PC sharing, text, audio, and video in one platform. 

A typical pairing session involved two programmers sharing 
desktops, with one of the pair (the navigator) having read-
only access while the other (the driver) actually edited the 
code.  The changes made by the driver were seen in real time 
by the navigator, who was constantly monitoring the driver�s 
work.  The navigator could communicate with the driver by 
speaking over the microphone, or via instant messaging.  The 
students were furnished Intel digital cameras to use as 
Webcams for videoconferencing, to allow them, for example, 
to show paper design documents to each other.  However, as 
the sessions progressed, none of these teams found the need 
to use the Webcams. 

Our goal was not to test if a remote pair could be as efficient 
as a co-located one, but to simply see if the programming 
pairs could work well enough to make functional software in 



reasonable time.  The pairs reported that after a few early 
sessions in which they were learning the platform behavior, 
they felt comfortable and natural coding with this 
technology.  The final game works correctly.  From this 
experiment we found that effective remote teaming could be 
done with the PC sharing software and audio support.  This 
platform was then used in the more comprehensive 
controlled experiment described next. 

COMPREHENSIVE PAIRING EXPERIMENT 

Hypothesis 
After the platform experiment, we ran an experiment to 
assess whether geographically distributed programmers 
benefit from using technology to collaborate synchronously 
with each other.   Specifically, we examined the following 
hypotheses:  

• Distributed teams whose members pair synchronously 
with each other will produce higher quality code than 
distributed teams that do not pair synchronously.  

• Distributed teams whose members pair synchronously 
will be more productive (in terms of LOC/hr.) than 
distributed teams that do not pair synchronously. 

• Distributed teams who pair synchronously will have 
comparable productivity and quality when compared 
with co-located teams. 

• Distributed teams who pair synchronously will have 
better communication and teamwork within the team 
when compared with distributed teams that do not pair 
synchronously.      

The Experimental Procedure 
The experiment was conducted in a graduate class, Object-
Oriented Languages and Systems, taught by Dr Edward 
Gehringer at North Carolina State University.  The course 
introduces students to object technology and covers 
OOA/OOD, Smalltalk, and Java.  At the end of the semester, 
all students participate in a 5-week long team project.  We 
chose this class for our experiment for the following reasons: 

1. The projects were developed using an object-oriented 
language. 

2. The experiment had to be performed on a class that had 
enough students to partition into four categories and 
still have enough teams in each category to draw 
conclusions.   

3. We needed some distance-education participants for the 
class to make distributed development feasible and 
attractive. 

The class had 132 students, 34 of whom were distance 
learning (Video-Based Engineering Education) �VBEE� 
students.  The VBEE students were located throughout the 
US, often too far apart for co-located programming or even 
face-to-face meetings.  The team project counted for 20% of 
their final grade.  The on-campus students were given 30 
days to complete the project (VBEE students had 37).   

Teams were composed of 2�4 students.  The students self-
selected their teammates, either in person or using a message 
board associated with the course, and chose one of the four 
work environments listed below. 

1. Colocated team without pairs (9 groups) 
The first set of teams developed their project in the tradi-
tional way: group members divided the tasks among them-
selves and each one completed his or her part.  An 
integration phase followed, to bring all the pieces together. 

2. Colocated team with pairs (16 groups) 
The next set of groups worked in pairs.  Pair programming 
was used in the analysis, design, coding and testing phases. 
A team consisted of one or two pairs.  If  there were two 
pairs, an integration phase followed. 
 
The next two environments consisted of teams that were 
geographically separated � �virtual teams.�  These groups 
were either composed entirely of VBEE students, or a 
combination of VBEE and on-campus students. 
 
3. Distributed team without pairs (8 groups) 
The third set of teams worked individually on different 
modules of the project at different locations. The contribu-
tions were combined in an integration phase. 

4. Distributed team with pairs (5 groups) 
This fourth set of teams developed the project by working in 
pairs over the Internet.  At the end, they integrated the 
various modules.  They worked with the PC-sharing platform 
we detailed earlier. 

In order to record their progress, the students used Bryce [5], 
a Web-based software-process analysis system used to record 
metrics for software development. Using this tool, the 
students recorded data including their development time, 
lines of code and defects.  Development time and defects 
were recorded for each phase of the software development 
cycle, namely, planning, design, design review, code, code 
review, compile and test.  Using these inputs, Bryce 
calculated values for the metrics used to compare the four 
categories of group projects.   

The two metrics used for the analysis were productivity, in 
terms of lines of code per hour; and quality, in terms of the 
grades obtained by the students for the project.  Additionally, 
after the students had completed their projects, they filled out 
a survey regarding their experiences while working in a 
particular category, the difficulties they faced, and the things 
they liked about their work arrangement. 

EXPERIMENTAL RESULTS 
Data were analyzed in terms of productivity and quality, as 
defined above. Also, student feedback formed an important 
third input for the experiment.  Our goal was not to show that 
distributed pair programming is superior to co-located pair 
programming for student teams.  Our goal was to demon-
strate that distributed pairing is a viable and desirable 
alternative for use with student teams, particularly for 
distance education students.  We plan to repeat this exper-
iment in the Fall 2002 semester to build up a larger base of 
results.    



Productivity 
Productivity was measured in terms of lines of code per hour. 
Average lines of code per hour for the four environments are 
shown in Figure 1. 

Lines of code per hour

0

5

10

15

2 0

2 5

Non-pair
colocated 

Pair
colocated

Non-pair
distributed

Pair
distributed

 
Figure 1 

The results show that distributed teams had a slightly greater 
productivity as compared to colocated teams; however, the f-
test for the four categories shows that results are not 
statistically significant (p < 0.1), due to high variance in the 
data for distributed groups.  This is better depicted by the 
box plot (Figure 2) for the four categories, which illustrates 
the distribution of the metric for the four environments. 

 
Figure 2 

A box plot shows the distribution of data around the median. 
The vertical rectangle for each category shows the 
distribution of the middle 50% of the readings. The 
horizontal line inside each rectangle shows the median value 
for that particular category. The line segment from the top of 
the rectangle shows the range in which the top 25% of the 
values lie.  Similarly, the line segment below the rectangle 
shows the range in which the bottom 25% of the values lie.  
Thus, the ends points of the two line segments indicate the 
total range that the values for a particular category fall into.  
For example, the median for the non-pair colocated category 
is around 10 LOC/hr., with the middle 50% of the values 
lying between approximately 9 and 13 LOC/hr., while the 
entire range is between 5 and 35 LOC/hr., approximately. 

If the comparison is restricted to the two distributed 
categories, a statistical t-test on the two categories shows that 
this difference is not statistically significant.  In terms of 
productivity, the groups involved in virtual teaming (without 
pairs) is not statistically significantly better than those 
involved in distributed pair programming. In other words, 
teams involved in distributed pair programming are not 
shown to be worse in terms of productivity than those 
forming virtual teams without distributed pair programming.  

Quality 
The quality of the software developed by the groups was 
measured in terms of the average grade obtained by the 
group out of a maximum of 110.  The graph below indicates 
that the performance of students did not vary much from one 
category to another. 
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Figure 3 

A box plot for the grades only corroborates the claim made 
above. Although nothing statistically significant can be said 
about the grades for the four categories, it is interesting to 
see that those teams performing distributed pair 
programming were very successful in comparison to other 
groups. The results of the statistical tests indicate that teams 
involved in virtual teaming were not significantly better than 
the distributed teams using pair programming, in terms of 
grade.  
 

 
Figure 4 

 



Student Feedback 
Productivity and product quality is important.  However, we 
also ran a survey to assess students� satisfaction with their 
working arrangement.  Five out of the six students involved 
in distributed pair programming thought that technology was 
not much of a hindrance in collaborative programming.  
Also, 23 out of 28 students involved in virtual teaming with 
or without pair programming felt that there was proper 
cooperation in the team, meaning that the technical platform 
provided the facilities needed. 
 
 
A COMPREHENSIVE ENVIRONMENT FOR 
DISTRIBUTED PAIR PROGRAMMING 
 
We now shift focus from the experiment we have completed 
with a simple technology base to a description of the more 
comprehensive collaboration support environment we are 
constructing for DXP.   Based on the results of earlier 
investigations into remote work systems and tele-presence, 
we are constructing a pair-programming station that will use 
hypermedia-augmented video projection to give the 
collaborators a better sense of �being there� while 
developing software jointly.  We first give some background 
on previous research in this area, and then describe the 
hardware and software components of our DXP 
environment. 
 
�Office of Real Soon Now� and VideoWindow 

Even with the remarkable graphics technology available at 
the high end of virtual reality systems, much remains 
unchanged from Englebart�s early prototype.  The dominant 
paradigm of human-computer interaction in the workplace � 
a single user sitting in front of a single display with limited 
resolution and a WIMP interface, attached to a single 
computer � remains in force and has become a barrier to 
effective communication and collaboration for group 
interactions.  The research we are doing is trying to break 
that barrier with relatively simple technology, compared to 
the systems just described. 
 
We are building a more effective collaborative environment 
for pair programming using the results of some simple wall-
size display experiments at UNC [28,29].  Whimsically 
termed the �Office of Real Soon Now� (a play on the name 
of the �Office of the Future�), it aims to get some of the 
benefits of large screens without waiting years and spending 
large amounts money.  In this project, Bishop and Welch 
have produced double-width wall-sized displays for their 
offices using COTS projectors, video cards, and PCs.  For 
their experiments they completely abandoned CRT displays 
and used only projected wall displays; after 3 years neither 
has any intention to return to CRTs.  Benefits of the large 
wall displays include greatly reduced eye-strain; better 
interaction capabilities with students when discussing joint 
work; and expanded screen real-estate.  Their experiments 
have concentrated on individual and co-located group use of 
the wall display technology, and have not involved 
networked collaborations. 

Just as the �Office of Real Soon Now� seeks to have large-
display benefits well in advance of the Office of the Future, 
we seek the �real soon now� benefits for distributed pair 
programming by using inexpensive COTS projection 
equipment, and ubiquitous PCs.  The design of our DXP 
environment employs the principles uncovered at BellCore in 
the VideoWindow project [30].  In this experiment, two 
rooms in different buildings at BellCore (coffee lounges) 
were outfitted with video cameras and wall-sized projections.  
In essence, an image of one lounge was sent to the other and 
projected on the back wall, giving the illusion in each room 
of a double-size coffee lounge.  The researchers discovered 
that many users found the setup to be very natural for human 
communication, due to its size.  Two people, one in each 
room, would approach the wall to converse, standing a 
distance from the wall that approximated the distance they 
would stand from each other in face-to-face conversations. 
 

 
 

Figure 5: DXP Collaborative pair programming setup   

 
The DXP Environment 
Our current experiments in distributed pair programming 
between UNC and NCSU have shown that programmer 
communication via a 19� to 21� display, while effective 
enough to allow development of good software, result in 
interactions that are somewhat stiff and limited in scope.  
The pairs so far have been given tools that support video 
interactions via webcam and postage-stamp-sized video 
windows.  After initially turning the cameras on along with 
the shared PC and the audio, all pairs soon turned the 
cameras off to enhance performance.  They reported that the 
video was too small to provide them with any 
communications enhancements.   
 
We believe a far more effective collaborative environment 
can be created with a wall-sized display produced by 
projectors, and that a corresponding improvement in 
distributed pair programming will result from this enhanced 
video support for collaboration. 
 
The equipment package needed for one office is: 

• High-resolution video projector2 (2) 



• Firewire camera + PCI video capture card (1) 
• PC video card to handle two screens seamlessly (1) 
• wiring, cable, microphones, screen boards, etc. 
 

The cost for a single office is about $8,000.  We are working 
with four packages, outfitting two offices at each of the two 
research sites (UNC-CH and NCSU).  This arrangement 
allows �local� distributed pairing at each site over the LAN, 
as well as pairing across sites with a wider-area network.  
Each office has two projectors.  One is primarily used for 
video display of the remote collaborator.  The other is for 
display of the shared computer �screen.�  We are starting 
with an L-shaped screen setup, with the collaborator video 
image to the side of the programmer and the computer 
display to the front.  We have placed the camera next to the 
projection wall rather than on the workstation in order to 
present each user with a view the other�s office, with a side-
view of the collaborator in the foreground.  We will 
experiment later with different user placements and screen 
arrangements.   

Figure 5 shows half the setup at UNC. Visible are the two 
projectors pointed at right angles to each other, and one of 
the screens.  As the developer sits, he sees the shared PC 
desktop projected ahead, and the collaborator projected to 
the left.  To communicate with the collaborator the developer 
turns to the left and speaks to the screen.  The camera 
location with the screen gives a nice impression of the pair 
being face-to-face. This mimics the head movement needed 
to look at one�s pair programmer when working co-located. 

We are working to eventually mix the video imagery 
(allowing the collaborators to see each other) with digital 
display information (the source code being developed), but 
for the first realization we use one projector for PC display 
and one for camera/video display.  Communication is via 
directional microphones placed in the vicinity of the 
workstations, so the participants will not be encumbered with 
headsets.  Two distributed collaborators interact much like 
they do with local pairing; to talk, one will turn to the other 
(face the projection wall) and speak openly in the room. 
Since the camera is on the projection wall, the remote 
collaborator will have the impression that the communicator 
is looking at him or her.  Each will see surrounding context 
and an image of significant size.  The illusion created is a 
�joint office� with the video walls, much like the virtual 
coffee lounge of BellCore�s project VideoWindow mentioned 
previously. 

Software Platform: Video with hyperlinking 

In addition to this hardware environment, we are developing 
for DXP software tools to more effectively support 
interaction between distributed pair programmers while 
developing programming project artifacts 

As experiments progress, we will seek to identify areas in 
which collaboration among the programming pairs would 
benefit from software support and to build any shared artifact 
tools we may need (editors, inspection tools, etc.).  Our first 
experiments, though, are to determine the effectiveness of the 
simplest approaches, using the observation made earlier that 
simple technology often reaps large benefits.  Thus our first 

experiments have been with a single virtual PC obtained via 
NetMeeting, on traditional PCs.  NetMeeting provides not 
only a shared desktop, but audio communications as well. 

One novel aspect of the DXP software environment is 
integration of the video stream from the camera with 
OvalTine, a hypermedia tool we developed at UNC to allow 
embedding of hyperlinks in video streams. In the section 
following we give an overview of the structure and image 
analysis techniques used in OvalTine to do video 
hyperlinking. 

Having hyperlinking capabilities in the DXP video widow 
gives collaborators unique tools for organizing software 
development.  Potential uses include creating hyperlinks off 
words on the collaborator�s whiteboard, effectively making 
the video image a virtual page.  A user can also attach a 
notepad to the collaborator herself (the face), so that ideas 
needing discussion can be noted as they are thought of; when 
pairs switch, face recognition software will allow the 
previously annotated information to be retrieved via a mouse 
click on the collaborator�s face. Another possible use is 
linking programmers� images to the code they have most 
recently worked on, or are responsible for.  Such a use would 
exploit the reason OvalTine was created -- to allow video 
streams to be properly integrated with textual and image-
based hypermedia documents (i.e., web pages and databases). 

OvalTine allows hyperlink annotations in both real-time 
streams and in stored video.  The later capability means that 
for study of DXP itself, the video window can be captured, 
archived, and then marked up with hyperlinks via OvalTine.  
Researchers studying the collaborators will be able to form 
video webs from the various DXP sessions.  We are sure 
there are other uses for hyperlinks that the programming 
pairs will discover during experimentation when the 
OvalTine-enhanced DXP environment is fully online.   
OVALTINE: HYPERLINKED REAL-TIME VIDEO 
 
One of the problems keeping video from being a fully first-
class data component of hypermedia documents is the 
difficulty of treating the objects depicted in video as 
identifiable, linkable content.  Rather, video tends to be 
manipulated as frames of pixels with no further subdivisions.  
When link markup is done on video streams, it is done 
manually frame-by-frame.  We have been working with 
OvalTine, a system for tracking objects in video streams so 
that hypermedia link anchors can be associated with the 
objects in the video frames.  The OvalTine tracking system 
can be used to do automated link markup of video streams.  
While our previous work with OvalTine presented object 
tracking in real-time streams [31], we have recently 
developed extended techniques for markup of stored 
(archived) data.  Our results allow hypermedia structure to be 
generated and added to large digital libraries of video data. 

Every current popular method for adding active regions to 
video requires manual selection of video objects, on a frame-
by-frame basis. No research efforts in automation have yet 
made it into common practice in a widely used system such 
as those from Apple (QuickTime, [32]). By contrast, an 
automatable object tracking system is much more desirable, 



both for real-time applications, and for the automated 
addition of hyperlinks to the vast amount of archived video 
currently in existence. 

A good overview of the issues and technologies in current 
hypervideo systems can be found in class notes at Texas 
A&M [33].  In the terms defined in this taxonomy, we are 
working on a system for automatically specifying mostly 
spatio-temporal links in hypervideo.  Hypercafe [34] is often 
cited in hypervideo discussions; however, it is a presentation 
system mostly and does not support the dynamic and 
automatic link anchor creation we are exploring in OvalTine.  
The Multimedia Systems Lab at IISc India is doing work on 
object tracking in MPEG streams [35].  This project seems 
similar in scope and goals to OvalTine.  They are tracking 
object in an MPEG stream, where as OvalTine is architected 
to be modular and extensible to define tracking and linking 
concepts at an abstract level, and to be applicable to different 
image and video formats with minimal extensions. Most 
other systems, however, that apply to hypervideo involve 
manual anchor creation when authoring hypervideos. 
 
Two tracking modes 

We have previously reported on the OvalTine system [31] 
and discussed the various distributed system architecture 
issues involved in storing and serving video hyperlinks in a 
client/server implementation.  This section presents our 
continuing work with the system, demonstrating the use of 
the basic real-time image tracking algorithms for use in 
automated markup of stored video data.  In the terms of the 
taxonomy we outlined in [31] this is a Server/Archived 
scenario, and we have chosen to implement a Manual object 
selection scheme. 

In our initial OvalTine implementation, we demonstrated 
real-time tracking of faces in live video streams, such as the 
one from the collaborator camera in the DXP environment 
(an example of real-time videoconferencing).  This tracking 
allows hypermedia link anchors to be associated with objects 
in the video window, creating a first-class hypermedia 
capability for video data. The face in the video frame 
becomes a live link, a selectable target for the user to click 
on to trigger some action.  As the face moves around the 
video screen, the live target area moves with it, providing the 
illusion that the face itself is the hyperlink anchor.  The 
target is optionally made visible by means of a simple 
highlight oval that moves with the face.  Clicks within the 
oval count as a click on the face, and the enveloping 
hypermedia layer follows the link associated with the face.  
The links targets are URLs entered when the object is first 
selected as a link anchor (at the initiation of tracking); 
selecting one triggers the display of a web browser window 
with the proper URL loaded. 

We have developed a second, equally important use for the 
OvalTine technology � automating the addition of link 
markup to stored (non-real-time) video data.  There is 
increasing interest in video data being incorporated in 
hypermedia structures (which we will hereafter refer to as 
hypervideo data).  Digital libraries are growing in popularity 
and scope, and video is an important component of such 

archives.  All major news services have vast video archives, 
valuable �footage� that would be of use in education, 
historical research, even entertainment. As noted earlier, the 
current best practices for link markup in video require 
completely, or considerably, manual markup of the video 
frames with the active, or hot, areas that serve as link anchors 
in hypervideo data.  Broad access to vast caches of stored 
video �footage� will only be possible with automated link 
markup methods.  

 

 
 

Figure 6.  OvalTine tracker interface 
 

We do not specify to what a link anchor may refer, nor do we 
limit the type of objects that may be designated as a link 
anchor. The goal of our work is to explore the creation and 
maintenance of hyperlinks in video streams, and to automate 
these procedures as much as possible. 

 

User Interface Examples: Ovals, trackers, sprites, 
links, and multi-links 
 
OvalTine is set up to allow link markup of stored video as an 
editing task.  Figure 6 shows the video display window, the 
properties window, and the URLs window.  The video 
display window presents the video data and shows the 
tracked objects as (optionally) outlined ovals.  For real-time 
applications, such as video conferencing, the playback 
controls are inoperative.  For markup of stored video, the 
user can do the standard start, stop, pause, and slider frame 
selection operations on the video stream.   

The tracking properties window allows the user to select the 
type(s) of tracking algorithms to apply to the video frames.  
OvalTine�s architecture has been structured to allow multiple 
tracking algorithms to be chained together and applied in 
sequence.  A user can even apply a different chain of trackers 
to each different oval if desired; OvalTine spawns a separate 
tracking thread for each oval.  Some trackers work better 
than others in varying images; the selection of specific 
trackers to use depends on image properties such as color 
variability, background complexity, object motion, texture, 
etc. 

Once a link anchor (oval) has been established in the video 
window, the user can associate one or more URLs with that 
anchor to be targets of the link(s).  These URLs show up in 



the URL window in the lower left.  Figure 6 shows one URL 
for each oval, and the association is made by the color of the 
tag.  For real-time links, mouse events are trapped in the 
video window, and the tracker information is used directly 
for the current frame to determine which stored URL is to be 
activated.   

Stored video has an extra layer atop the base video data.  
During markup, the video stream is played and tracked as if 
in real-time.  The areas that the trackers identify as active 
link anchors in each frame are captured and stored in a Sprite 
layer for Apple Quicktime [32].  OvalTine then uses 
Quicktime to overlay the hotspot layer onto the video image 
during playback, and traps mouse clicks in these areas for 
processing through the associated URL information in 
OvalTine�s data store. 

To edit, the user selects a starting frame with the slider 
controls, and then designates one or more objects to be 
tracked.  The video is started with the �track� button, and the 
tracker chain for each oval causes the link anchors to follow 
the objects as they move in the video frame.  The sprite 
infrastructure captures the layout information needed to 
maintain the link anchors in association with the video data.  
At any point the user may pause the video, add or delete 
ovals, and continue with tracking.   

URLs can be added to the tracked objects at any point, either 
during tracking, or during playback editing of the marked-up 
video data.  Though not shown, ovals can be linked to any 
first-class Web data, including another OvalTine video clip.   
There is also a �lost� link palette (not shown) that collects 
the URLs associated with objects that are being tracked, but 
move out of the video window.  Any URLs associated with 
such an object are taken out of the URL window and saved 
in the �lost� list. This is a convenience that makes it easier 
for the user to re-associate these URLs if the tracked object 
should reappear in the video window and need to be tracked 
again. 

 
 
Figure 7.  OvalTine application showing marked up video 

stream 
 

Figure 7 shows OvalTine in use while viewing a marked-up 
video stream.  Here we see a CNN clip where the face of the 
reported has been annotated with 2 different links.  One link 
is to the CNN home page (seen displayed in the background).  
The other link is to an article and map on Pakistan, which is 
the topic of the video; this page is shown in the foreground. 

CONCLUSIONS 
The results of our experiment indicate the following: 

• Pair programming in virtual teams is a feasible way of 
developing object-oriented software.   

• Pair programming in colocated teams is a feasible way 
of developing object-oriented software. 

• Software development involving distributed pair 
programming seems to be comparable to colocated 
software development in terms of the two metrics, 
namely productivity (in terms of lines of code per hour) 
and quality (in terms of the grades obtained).  

• Colocated teams did not produce statistically 
significantly better results than the distributed teams. 

• The feedback given by the students indicates that 
distributed pair programming fosters teamwork and 
communication within a virtual team.  

Thus, the experiment is a first indication that distributed pair 
programming is a feasible and efficient method for dealing 
with team projects.  

The successes of our simple DXP platformn has led us to 
construct one that presents collaborators with a more 
significant video image, including the ability to create 
hyperlinks in a real-time video stream.  Follow-on 
experiments in distributed pair-programming will be 
conducted using this video-enhanced DXP environment. 
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