
 1

Technical Report TR02-008

Department of Computer Science

Univ of North Carolina at Chapel Hill

CobWeb: Visual Design of Collaboration Protocols
for Dynamic Group Web Browsing

David Stotts, Jan Prins, Lars Nyland

Dept of Computer Science
Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

March 1, 2002

 2

CobWeb: Visual Design of Collaboration Protocols for Dynamic Group Web
Browsing

David Stotts, Jan Prins, Lars Nyland

Dept of Computer Science
Univ. of North Carolina at Chapel Hill

stotts@cs.unc.edu

Abstract

CobWeb is a collaborative web browsing system that allows
the rules governing the interactions of multiple users (the
collaboration protocol) to be externally specified and
dynamically changed. We explain the architecture of the
CobWeb implementation, and conclude by showing how the
Java classes defining collaboration protocols are generated
from visual formal specifications. We note also that, though
CobWeb has been used as an experimental platform for
group Web browsing, the notion of dynamically loaded
protocols can also be used to create novel single-user
browsing behaviors on top of Netscape's Navigator (or any
other Java-supporting browser).

1. Introduction

The CobWeb system is a collaborative Web browser. While
this is not novel of itself, our approach to describing the
collaboration rules governing the interactions of users � the
collaboration protocol, is. Our approach to protocols is
adaptable to all forms of collaborative software; we present
CobWeb specifically as one example.

The advantage of CobWeb is formal analysis and modularity
of software. The rules governing group member interactions
are critical aspects of collaborative software systems. The
current norm is to express those rules directly in the source
code, intermingled among the rest of the software
functionality. We take the position that the architecture of a
collaborative system is better structured by having the rules
separated, easily identified, and expressed in a manner
amenable to analysis.

Our approach is to develop protocols around a Trellis
hypermedia model. Trellis models are annotated, colored
P/T nets and express concurrency and synchronization
among the components of the collaboration. We develop
CobWeb protocols with a graphical editor (xTed), using a
visual notation appropriate to the formalism. Once
developed, we can analyze them with model checking for
logical flaws, and then generate the Java code to implement
them for CobWeb directly from the editor.

In summary, our research is developing technology for:

• isolating collaboration protocols as modular elements of

the software architecture of collaborative systems
• dynamically loading and replacing a protocol during

system use (browsing in the case of CobWeb)
• graphical creation and model-checking verification of

collaboration protocols

We present CobWeb, a collaborative web browser, as an
example collaborative system employing our results.

In the remainder of this paper we first discuss other
approaches to collaborative system rules. We then give a
brief summary collaboration protocols and the Trellis model
on which we build them. We follow this with a description
of the CobWeb system architecture and how we encode a
protocol in Java. We also discuss the xTed editor for
creating protocols, and the process of generating Java
implementations from it. We conclude with examples of
specific protocols developed for CobWeb.

2. Related work

The CobWeb project extends two basic (though related)
areas of hypermedia and Web research: collaborative Web
browser technology, and hyperdocument browsing semantics
in general.

Collaborative browsing of Web structures has been
investigated previously in many projects. Notable ones
include the Sociable Web from MIT Media Lab [3], Chiba-
MOO from Sensamedia [4], and Virtual Places, which is
available commercially (http://www.vplaces.com/).

EIT (Enterprise Integration Technologies) was created as a
company to develop software to support corporate-level
endeavors; before being bought by Verifone several years
ago, they produced a suite of collaboration support software.
It included the SHARE system [10], which allowed a group
of designers to use the Web to construct designs; it also
included the more recent Ewgie (Easy Web Group
Interaction Enabler, at http://www.eit.com/ewgie/), which
allows people to see where others are browsing on the Web.

 3

You can choose to follow people in Ewgie; if the person
you're following types a URL, you will be taken there as
well.

In each of these projects, the manner in which the group of
browsers may interact is fixed and defined in the immutable
code of the application. For example, Ewgie (and most
others) offers what is commonly called shoulder surfing, in
which a leader browses the Web and all other group
members follow the leader, ``looking over his shoulder'' so
to speak. CobWeb differs from these early approaches in
that the collaboration protocol is not fixed. The system will
dynamically load new protocols, allowing users to create
their own interaction rules.

Kaplan developed ConversationBuilder [9] to allow flexible
rules. The rules are flexible, but are not abstracted well from
the body of code defining the application. Hence the rules
are not analyzable, being effectively arbitrary program
fragments. Our approach differs in providing this flexibility
by making the rules defined by an analyzable model that is
not an arbitrary Turing machine.

3. Collaboration protocols

A collaboration protocol, however it is expressed, must
capture several aspects of Web documents and how users
can interact with them:

• Who are the group members?
• Where are the group members?
• What are the goals of the group activity?
• What are the capabilities of each member?
• What resources are required by each member?
• What information will each member contribute to the

activity?
• What Web pages (URLs) are involved in the tasks?
• What concurrent threads can exist in overall group

activity?
• At which pages (URLs) must the threads be

synchronized?
• What timing constraints exist on activity durations?

This is just our starting list; we expect to discover more
characteristics as our work with CobWeb progresses.

Collaboration protocols should be unambiguous and formal.
Informal notations may convey information to humans but
do not support analysis and automated reasoning. Stotts and
Furuta have developed a method for verifying the browsing
properties allowed by the structure of a hypermedia
document [15], including documents with structure specified
by Petri nets. Current work is extending this analysis to
colored net models that encode collaboration protocols [11].

Collaboration protocols must however be flexible, not
unuseably rigid. People are not automata; this is what makes
CSCW so fascinating as an area of study. They often need
guidelines more than ``rules''. They need freedom to relax or
sidestep rules when circumstances are not adequately
covered by those rules. As people discover better methods
and processes, the rules need to allow modifications and
updates. This is an issue of implementing, or enforcing, the
rules. We see it as orthogonal to specification of the rules
themselves.

We want to develop a protocol specification and
implementation method that will be both formal and flexible.
Rules need to be malleable while still conveying clear
semantic information to the system using them. People need
to feel in control of a system, not controlled by a system.
We see a browser like CobWeb as furthering this goal.
Group use of CobWeb will identify areas where the rules of
group interaction are too constrained, or perhaps too
unconstrained. New rules can be developed easily and
incorporated into the system, changing its behavior. This
can be done by users and does not require rewriting CobWeb
itself.

Trellis hypermedia, collaborations, and CobWeb

The concept of hyperdocument browsing semantics was
defined and first investigated in the Trellis project
[12,6,13,14,7,8]. In the various Trellis prototypes, browsing
semantics was specified within each document by using the
links to implicitly define a parallel automaton (specifically, a
Petri net) that formally defined the multi-threaded
``behavior'' of the document.

Early uses for Trellis included controlling multiple threads of
activity on a reader's screen while browsing, much like
frames currently in HTML. This multi-threading was
extended to include synchronization of different readers on
multiple screens, i.e., collaborative browsing semantics [7].
We refer to the specification and synchronization of multiple
user activity threads as a collaboration protocol.

In earlier projects we have migrated some of the results from
Trellis research into use in the WWW. We first produced
the MMM (Multi-head/Multi-tail Mosaic) prototype Web
browser[2]. MMM was a modification of Mosaic, and an
extension of HTML, to allow expression of multi-
headed/multi-tailed links (as in Petri net arcs); like Trellis,
then, MMM allowed expression of a rudimentary
collaboration protocol implicitly in document links, but it
worked for the Web. We built a later version of MMM was a
proxy server for Netscape Navigator [1].

CobWeb takes this work further. We are experimenting with
an approach in which the collaboration protocols are
specified independently of document pages (instead of

 4

Trellis-like implicitly in the links). We have retained the
Trellis notion that a collaboration protocol can be expressed
formally as a colored Petri net. Figure 1 illustrates this
concept with a colored net encoding the rules of a simple
moderated meeting.

4. Automating creation of CobWeb protocols

Our first collaboration protocols were written manually as
Java classes. We have produced a shoulder surfing protocol
with chalk passing, a classroom lecture protocol (shoulder
surfing without leader changes), and a moderated meeting
protocol. Some of these are explained in detail in following
sections.

Once we understood the details of interactions needed for the
CobWeb application specifically, we automated the creation
of protocols for it and re-architected the system to allow
protocols to be dynamically loaded, even during an existing
group session.

To do this we developed a modification of the Trellis colored
net editor xTed to have the Java code for the protocol classes
generated automatically from formal specifications (colored
P/T nets). When the net is complete, a user can encode the
various aspects of a protocol as annotations on this
synchronization structure. After development of the
annotated net, verification is done and the Java code
implementing the protocol is generated. Figure 2 shows this
net editor displaying the moderated meeting protocol from
Figure 1.

Protocol design proceeds as follows. The P/T net structure
needed to express the concurrent threads of activity in the
collaboration is drawn in xTed. Appropriate information is
added to the net components as annotations. Some of these
annotations are hypermedia pages (shown in Figure 2 as
popup windows), explaining the system functionality that
will be active at the various points in the net as the
collaboration progresses.

Verification of the protocol is then both a formal process and
an informal process, done hand-in-hand. Informally, the
Trellis hypermedia tool can directly read the P/T net and its
document components and present the functionality of the
system for �browsing�. This browsing simulates with
synchronized multiple windows the actions of the final
system during execution. Formally, the P/T net is exported
to the input format needed for model checking [15,16].
Model checking, developed by Clarke [17,18], is an
automated technique for determining if a finite state system
had desired properties (like deadlock freedom, correct
component relationships in time, etc.). The properties are
expressed in a temporal logic [19], and the model checker
tells which are upheld and which are violated. Though we

are currently using Clarke�s symbolic checker, there are
other approaches to model checking; see [20] for example.

If informal browsing or formal model checking indicate
flaws in the protocol, then xTed is used to continue the
design process. Eventually the designer is satisfied that the
CobWeb protocol is complete and correct. At this point the
P/T net and it�s annotations are used by xTed to generate
appropriate Java classes to fit into the CobWeb architecture
in the protocol locations. CobWeb will then behave during
web browsing as the P/T net protocol indicates. The various
protocols available to CobWeb are selectable from a pull-
down menu during execution. Figure 3 shows the CobWeb
window during browsing; the buttons in the lower right
window are the names (and actions) of the transitions in the
P/T net for the active protocol. The protocol is selected from
the list above these buttons (protocol1 is active in this
example).

Users will be allowed or restricted from the floor, one or
more at a time. Group sizes are set. Users are allowed or
restricted from browsing away from the group. Decisions
are made as to who is forced to follow the moderator when
the moderator browses. Use of the chat tool is established;
users are either allowed to chat, or only the floor holder (surf
leader) is allowed to chat. These are some of the aspects of
the CobWeb protocol that are encoded into the generated
Java classes.

The goal of our work with the xTed graphical editor is to
move as many of the previously enumerated aspects of
collaboration protocols as possible into the formal notation
of annotated nets. Some are easy: multiple activity threads
and synchronizations, for example, are exactly what the net
arcs express; colors on tokens allow creation and display of
categories of users and tasks; annotations on tokens express
user locations (by IP address, for example); annotations on
the places (circles) express URLs if specific pages are
needed at some point in collaboration; annotations on
transitions (bar) express timing constraints that might apply
to actions. Other aspects are harder to formalize: group
goals, individual goals, resources required. These have not
yet been worked into our editor prototype. If needed, they
must be hand coded as additions to the Java framework
generated from xTed.

5. CobWeb System Architecture

CobWeb operates with Netscape Navigator. No modified
browser is required, though a server does have to be installed
and executed on some host to manage group membership.
Anyone user can easily attend a CobWeb session from
anywhere in the world. Figure 4 shows the main
components of the CobWeb system architecture.

 5

Java Applets/JavaScript

CobWeb is realized with a combination of Java applications,
applets and JavaScript. JavaScript retrieves the current URL
of each page. Communications between an individual
workstation and the server is done through applets. An applet
can only communicate with the server machine from which
it is loaded (the applet is specified within a HTML page), so
we had to design a work-around for this limitation.

CobWeb comprises a Java application running as a server, a
Java applet that is downloaded by a person who wishes to
join a CobWeb session, and a JavaScript component of the
Web page that is loaded for CobWeb itself. The server
application tracks group membership; there can be numerous
different groups active at any time. It also enforces the rules
of whatever collaboration protocol each group is using.

Figure 3 shows the main screen of CobWeb. It is divided
into two frames; the Web page of interest is in the left frame,
and a ``chat room'' is in the right frame. When a user
executes CobWeb, he selects the protocol under which he
wishes to operate (under the chat window). In the current
prototype, this also selects the group to join, as we run only
one group per protocol. This is an arbitrary limitation, and
not fundamental to the CobWeb concept.

The selected protocol, a Java class, is dynamically loaded
and new buttons are then displayed under the chat window.
The buttons loaded represent the actions allowed by the
protocol. The user will be asked to register a name with the
server, and then a note will be posted to the chat window
informing others in the group that a new user has joined.

The user might then browse on the Web page in the left
window, contribute notes to the chat window, or execute
protocol functions by clicking the buttons below the chat
window. The user will be allowed to do these things, or
prohibited, at different times, depending on the structure of
the collaboration protocol. For example, one protocol might
not allow a reader to leave the page displayed on the left,
allowing only the leader to do so. Another protocol might
allow the leader to ``drag'' readers with him/her, but then
allow readers to leave the page of interest if they wish to. A
protocol might allow only the leader to contribute to the chat
window, or it might allow free access to chat at all times by
all users; it might prescribe a voting mode in which each
user can contribute, but only once. A protocol might not
even have a notion of leader, having a mechanism in which
no one follows anyone else unless they specifically request
to go where another is.

The amount and manner of access to CobWeb resources is
entirely dependent on the actions defined and controlled by
the dynamically loaded Java protocols.

Client Side

The applet that runs on the client-side machine is chatclient.
The class chatclient is derived from the class Applet and
performs the following actions:

• Establishes the connection with the server
• Creates a user interface (input fields, output areas,

protocol choice box and three buttons which are
``Reload'', ``Back'' and ``Forward''

• Instantiates a pagectl object that retrieves each
attendee's current URL and displays it in the address
field, and if required, sends it to the server.

• According to the user's request, dynamically loads the
Java class which describes a selected protocol on client
side.

• Instantiates a UserInfoFrame object that pops up a
window frame through which attendees can enter user
ID at the server registration phase.

Class pagectl and the Java class used to describe the
specified protocol are both derived from class Thread. As the
result, they can run concurrently with the applet.

Server Side

The Java program that runs on the server machine is
chatserver. The class chatserver is derived from the class
Thread and performs the following:

• Creates a window frame that keeps displaying the latest

group membership list for the collaboration.
• Instantiates a ServerWriter object that broadcasts the

new URL fetched by the leader as well as the inputs
made on the shared whiteboard by special attendees.

• Instantiates a ConnectionWatch object that keeps
watching the connections between the server and all
attendees. If a connection from an attendee is broken,
the attendee's name is removed from the list. This event
is broadcast to all remaining attendees.

• Establishes a connection with each attendee. According
to each client's required protocol, the server dynamically
loads a Java class that describes the specified protocol
on the server side and uses this class to keep
communication with the attendee.

Classes chatserver, ConectionWatcher, ServerWriter and the
dynamically loaded protocol class are all derived from class
Thread.

6. Encoding a Protocol in Java

A browsing protocol defines a user's viewing behavior. The
system can support multiple protocols and new protocols can
be added easily.

 6

The primary server and client are general and protocol
independent. As the result, the application programmer only
needs to write protocol-specific code to add a new protocol.
The system can dynamically load the new protocol
components to the server and to the client. Thus a user can
select the protocol to use on-the-fly.

We need to implement two Java classes to describe a
protocol. One is for the client and the other for server. The
application programmer should define protocols based on
these following rules.

Client Side

We define an interface protocol.java. It contains one abstract
method setParams(chatclient a). Each Java class in the
protocol ``extends Panel implements Runnable''. There are
three key methods in each class:

• setParams(chatclient a): In this method, you need to

initialize all the variables and add the necessary
graphical user interface components.

• handleEvent(Event evt): This method handles all the
events created by the components added in the method
setParams(chatclient a).

• run(): In this method, the client and server
communicate with each other; the client receives and
processes commands from the server.

Besides these three key methods, you can write more
methods as necessary.

We have already written two Java classes: chatclient.java
and pagectl.java. There are two variables imgSend and
wordSend in chatclient.java. You may update them in your
new protocol Java class. If you want to send the URL of the
page that you are browsing to the server, set the value of
imgSend as true (default is false). If you want to send the
words entered through the input text field to the server, set
the value of wordSend as true (default is false). Example
protocol code is available for inspection online at
http://www.cs.unc.edu/~stotts/cobweb/doc/index.html

Server Side

We define an interface connection.java. It contains one
abstract method setParams (Socket s, ConnectionWatcher w,
ServerWriter sw, String username, String protocol). Each
Java class ``extends Thread implements connection''. There
are two key methods in each class:

• setParams (Socket s, ConnectionWatcher w,

ServerWriter sw, String username,String protocol): In
this method, you need to initialize all the variables.

• run(): In this method, server and client communicate
with each other. The server provides service to the
client's requests.

Besides these two key methods, you can writer more
methods as necessary.

We have already written three Java classes: chatserver.java,
ServerWriter.java, and ConnectonWatcher.java. If you want
to broadcast a message or a URL to all the clients, call
method outdata.push(String protocol, String msg) of class
ServerWriter. We wrote thirteen useful methods in
ServerWriter.java to use in new Java protocols; for example,
to update an attendee's status. Details can be seen in the code
for ServerWriter.java, which can be seen online at the URL
http://www.cs.unc.edu/~stotts/cobweb/doc/index.html.

7. Example collaboration protocols

So far, the system supports several predefined protocols. We
describe two commonly understood ones here: Web Lecture,
and Web Conference.

Web Lecture

Protocol 1 defines a web lecture. It currently provides four
basic functions. When you select the "protocol 1" from the
protocol choice box, four buttons will be displayed on the
bottom of the user interface.

• Take Lead: by clicking this button, if no one is leading

now, you will become the leader; when you first enter
the system, you are by default a viewer.

• Give Up: if you don't want to lead any more.
• Break: if you want to browse a page by yourself a while

and don't want to be interrupted by the leader's
movements, click this button; you are still able to
communicate with other attendees in the chat window.

• Rejoin: if you want to come back and the follow the
leader.

Web Conference

Protocol 2 defines a web conference, which is very close to
the moderated meeting illustrated as a colored net in Figure
1. When you select "protocol 2" from the protocol choice
box, a button, "Moderate" will appear on the bottom of the
user interface. If you want to be the moderator, click this
button. If no one is moderator, you will be given the job.
Then, five extra buttons will appear for the functions of the
moderator:

• Add Person: by clicking this button, the moderator can

add a person from the pool (outside the conference) to

 7

listening status. Everyone is in the pool by default when
they first enter the system.

• Delete Person: by clicking this button, the moderator
can delete a person who is listening and return them to
the pool.

• Grab Floor: if the moderator wants to speak, he will
click this button. If someone else is speaking, he is put
on hold and so the moderator can have the floor.
Having the floor means you are allowed to post to the
chat window. Only the current speaker can do so.

• Drop Floor: when the moderator finishes speaking,
click this button. If a previous speaker is on hold, he will
be returned to the floor to continue speaking.

• Swap Mod: the moderator and a listener can swap jobs
with each other. The moderator will become a listener
and the listener will be the moderator.

When a person in the pool is added to the listening group
(but not as moderator), four new function buttons will appear
on his panel:

• Get Floor: for a listener to be allowed to speak; If no

one else is currently speaking, the listener is allowed to
post to the chat window.

• Release Floor: when the current speaker is finished and
wishes to return to listening status.

• Suspend: the listener wants a break; during the rest, he
cannot get any information from the meeting.

• Rejoin: the resting listener becomes an active listener in
the meeting again; posting to the chat window are now
visible again.

8. Conclusions

Collaboration protocols are the rules under which a group of
people interacts in a groupware application. Group Web
browsing is currently done by having one of several well-
know collaboration protocols (e.g., shoulder surfing or
classroom lecture) embedded in the code of a browsing
application.

CobWeb is more flexible than current group Web browsing
approaches, as the collaboration protocols it uses are
modular parts of its architecture and can be replaced. The
group behavior enforced by CobWeb, then, is inherently
extensible. This is done in the current prototype by using the
xTed graphical editor to produce new Java classes
expressing the desired interactions, and then dynamically
loading them into CobWeb.

Note that the CobWeb technology can complement or
augment other tools for structuring Web content, such as
Walden's Paths [5]; this tool allows related Web pages to be
linked in sequence and presents sequences as navigable
structures. Since CobWeb does not require any specific Web

pages and does not require any alteration to page contents, it
can be used to gather a group for collective use of a
structuring tool like Walden's Paths.

Finally, we should note that this paper, and most of our
CobWeb experimentation, has been concerned with multi-
user Web access. However, nothing in CobWeb requires
that dynamically loaded protocol must involve a group. We
can as easily write protocols that will prescribe novel or
complicated browsing behaviors that are to be navigated by a
single user; it would not be, in such a case, a collaboration
protocol, but certainly it is a way to create, for example,
interesting navigation activities for literary Web documents.
An author can create novel literary experiences for
hyperdocument readers by creating content in conjunction
with controlling protocols for presentation, access, timing,
etc. In essence, CobWeb can be programmed by individual
authors to simulate single-user behaviors that are considered
interesting in other systems.

Acknowledgements

This project was supported in part of the DARPA CAETI
program (Computer Aided Education and Training Initiative)
and was supported through NRad grant N66001-95-C-8615,
and by the National Science Foundation under grant
9732577.

References

[1] M. Capps, B. Ladd, D. Stotts, "Enhanced Graph Models
in the Web: Multi-client, Multi-head, Multi-tail Browsing,"
Computer Networks and ISDN Systems, vol. 28 (Proc. of the
5th WWW Conf., May 6-10, 1996, Paris), pp. 1105-1112.
This paper is available on-line at
http://www5conf.inria.fr/fich_html/papers/P19/Overview.ht
ml

[2] B. Ladd, M. Capps, D. Stotts, and R. Furuta, "Multi-
head/Multi-tail Mosaic: Adding Parallel Automata
Semantics to the Web," World Wide Web Journal, O'Reilly
and Associates Inc., vol. 1 (Proc. of the 4th International
WWW Conference, Boston, December 11-14, 1995), pp. 433-
440. This paper appears on-line at
http://www.w3.org/pub/Conferences/WWW4/Papers/118/

[3] J.S. Donath and N. Robertson, �The Sociable Web,�
Technical Report, MIT Media Lab, 1994. http://big-
sleep.media.mit.edu/Social-Web/SociableWeb.html.

[4] S.L.Epstein,, Collaborative Hyperarchical Integrated
Media Environments, Sensemedia Publishing, 1995.

 8

[5] R. Furuta, F. Shipman, C.C. Marshall, D. Brenner, and
H.-W. Hsieh, �Hypertext Paths and the World-Wide Web:
Experiences with Walden�s Paths,� In Proc. of ACM
Hypertext �97 (Apr. 1997), ACM, pp. 167-176.

[6] R. Furuta and P. D. Stotts, "Programmable Browsing
Semantics in Trellis," Proc. of Hypertext '89 (ACM),
Pittsburgh, November 1989, pp. 27-42.

[7] R. Furuta and P. D. Stotts, "Interpreted Collaboration
Protocols and their use in Groupware Prototyping," Proc. of
the 1994 ACM Conference on Computer Supported
Cooperative Work (CSCW '94), Research Triangle Park, NC,
October 1994, pp. 121-131.

[8] R. Furuta and P. D. Stotts, "Dynamic Hyperdocuments:
Replacing the Programming Metaphor," Comm. of the ACM,
short communication in special issue on Hypermedia Design,
Aug. 1995, pp. 111-112.

[9] S.M. Kaplan, W.J. Tolone, D.P. Bogia, and C. Bignoli,
�Flexible active support for collaborative work with
ConversationBuilder,� in Proc. of ACM Conf. On Computer
Supported Cooperative Work (CSCW �92, Oct. 1992), pp.
378-385.

[10] V. Kumar, J. Glickman, and G. Kramer, �A SHAREd
web to support design teams,� in Proc. of WETICE �94 (Apr.
1994), Morgantown, W.Va., pp. 178-182.

[11] J. Navon, D. Stotts and R. Furuta, "Subdocument
Invocation Modes in Collaborative Hyperdocuments,"
Computers in Industry (Elsevier), vol. 29 (1996), pp. 91-104.

[12] P. D. Stotts and R. Furuta, "Petri Net Based Hypertext:
Document Structure with Browsing Semantics," ACM Trans.

on Information Systems (ACM), vol. 7, no. 1, January 1989,
pp. 3-29.

[13] P. D. Stotts and R. Furuta, "Temporal
Hyperprogramming," Journal of Visual Languages and
Computing (Academic Press), vol. 1, no. 3, September 1990,
pp. 237-253.

[14] P. D. Stotts and R. Furuta, "Dynamic Adaptation of
Hypertext Structure," Proc. of Hypertext '91 (ACM),
December 15-18, 1991, San Antonio, Texas, pp. 219-231.

[15] P. D. Stotts, R. Furuta, and C. Ruiz Cabarrus,
"Hyperdocuments as Automata: Verification of Trace-based
Browsing Properties by Model Checking," ACM Trans. on
Information Systems, vol. 16, no. 1, January 1998, pp. 1-30.

[16] Stotts, P.D., and J. Navon, �Model Checking CobWeb
Protocols for Verification of HTML Frames Behavior,�
Proc. of WWW 2002, Honolulu, Hawaii, May 2002. (to
appear)

[17] J. R. Burch, E. M. Clarke, K. L. McMillan, �Symbolic
Model Checking: 10^20 States and beyond,� Information
and Computation, vol. 98, pp. 142-170, 1992.

[18] E. M. Clarke, E. A. Emerson, A. P. Sistla, �Automatic
verification of finite-state concurrent systems using temporal
logic specifications,� ACM Trans. on Programming
Languages and Systems, vol. 8, pp. 244-263, 1986.

[19] A. Pnueli, �A temporal logic of concurrent programs,�
Theoretical Computer Science, pp. 45-60, 1981.

[20] �On-the-fly, LTL Model Checking with SPIN�, Bell
Labs Research, 2001. http://netlib.bell-
labs.com/netlib/spin/whatispin.html

 9

Figure 1. Moderated meeting collaboration protocol

 10

Figure 2. Sample xTed screen, showing graphical protocol editor

Figure 3. CobWeb screen shot, showing browser window and chat window

 11

Figure 4. CobWeb system architecture diagram

