
 1

Technical Report TR02-007

Department of Computer Science
Univ of North Carolina at Chapel Hill

Automated Hyperlink Markup for Archived Video

David Stotts, Jason Smith

Dept. of Computer Science
Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175 USA
1-919-962-1833

stotts@cs.unc.edu

February 15, 2002

 2

Automated Hyperlink Markup for Archived Video
David Stotts

Dept. of Computer Science
Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175 USA
1-919-962-1833

stotts@cs.unc.edu

Jason Smith
Dept. of Computer Science

Univ. of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175 USA

1-919-962-1799

smithja@cs.unc.edu

ABSTRACT

One of the problems keeping video from being a fully
first-class data component of hypermedia documents is the
difficulty of treating the objects depicted in video as
identifiable, linkable content. Rather, video tends to be
manipulated as frames of pixels with no further
subdivisions. When link markup is done on video
streams, it is done manually frame-by-frame. We have
been working with OvalTine, a system for tracking objects
in video streams so that hypermedia link anchors can be
associated with the objects in the video frames. In this
work we show how the OvalTine tracking system can be
used to do automated link markup of video streams.
While our previous work with OvalTine presented object
tracking in real-time streams, we concentrate here on
markup of stored (archived) data. Our results will allow
hypermedia structure to be generated and added to large
digital libraries of video data.

General Terms
Algorithms, Documentation, Experimentation, Human
Factors

Keywords
Video, image analysis, markup, hypermedia, editing,
digital library, tracking

1. MOTIVATION AND BACKGROUND

We previously reported on the OvalTine system, and
discussed the various distributed system architecture
issues involved in storing and serving video hyperlinks in
a client/server implementation [1]. This paper presents
our continuing work with the system, demonstrating the
use of the basic real-time image tracking algorithms for
use in automated markup of stored video data. In the
taxonomy we outlined previously [1], this is a
Server/Archived scenario, and we have chosen to
implement a Manual object selection scheme.

In our initial OvalTine implementation, we demonstrated
real-time tracking of faces in live video streams, such as
you might have in a real-time videoconferencing system.
This tracking allowed hypermedia link anchors to be
associated with objects in the video window, creating a
first-class hypermedia capability for video data. The face
in the video frame became a live link, a selectable target
for the user to click on to trigger some action. As the face
moved around the video screen, the live target area moved
with it, providing the illusion that the face itself was the
hyperlink anchor. The target was optionally made visible
by means of a simple highlight oval that moved with the
face. Clicks within the oval counted as a click on the face,
and the enveloping hypermedia layer followed the link
associated with the face. The links in that demonstration
were URLs entered when the object was first selected as a
link anchor (at the initiation of tracking); selecting one
triggered the display of a web browser window with the
proper URL loaded.
In this paper we present a second, equally important use
for the OvalTine technology � automating the addition of
link markup to stored (non-real-time) video data. There is
increasing interest in video data being incorporated in
hypermedia structures (which we will hereafter refer to as
hypervideo data). Digitial libraries are growing in
popularity and scope, and video is an important
component of such archives. All major news services
have vast video archives, valuable �footage� that would
be of use in education, historical research, even
entertainment.
The current best practices for link markup in video require
completely, or considerably, manual markup of the video
frames with the active, or hot, areas that serve as link
anchors in hypervideo data [9]. Broad access to the vast
stored video �footage� just mentioned will only be
possible with automated link markup methods.
We do not specify to what a link anchor may refer, nor do
we limit the type of objects which may be designated as a
link anchor. The goal of our work is to explore the
creation and maintenance of hyperlinks in video streams,
and to automate these procedures as much as possible.

 3

Before any technical discussions, we look at previous
work in hypervideo.

1.1 Related work in hypervideo

We use the term hypervideo to refer to a displayed video
stream that contains embedded user-clickable anchors.
These anchors are logically attached to objects within the
video environment, independent of location within the
field of view [7]. For instance, a person's face in a video
conferencing system may be designated as a hyperlink. As
the person moves within the image, the clickable area that
activates that hyperlink will move with the image of the
face, so that the face itself defines the active region.
Multimedia has been trending from text to static images to
video. On a parallel path, hyperlinking systems, most
notably the World Wide Web, have evolved from the use
of pure text to the incorporation of static images with
embedded anchors (image maps), and now to video
streams with active regions [9, 17].
A good overview of the issues and technologies in current
hypervideo systems can be found in class notes at Texas
A&M [8]. In the terms defined in this taxonomy, we are
working on a system for automatically specifying mostly
spatio-temporal links in hypervideo. Hypercafe is often
cited [7] in hypervideo discussions; however, it is a
presentation system mostly and does not support the
dynamic and automatic link anchor creation we are
exploring in OvalTine. The Multimedia Systems Lab at
IISc India is doing work on object tracking in MPEG
streams [22]. This project seems similar in scope and
goals to OvalTine. They are tracking object in an MPEG
stream, where as OvalTine is architected to be modular
and extensible to define tracking and linking concepts at
an abstract level, and to be applicable to different image
and video formats with minimal extensions. Most other
systems, however, that apply to hypervideo involve
manual anchor creation when authoring hypervideos.
Every current popular method for adding active regions to
video requires manual selection of video objects, on a
frame-by-frame basis. No research efforts in automation
have yet made it into common practice in a widely used
system such as those from Apple (QuickTime). By
contrast, an automatable object tracking system is much
more desirable, both for real-time applications, and for the
automated addition of hyperlinks to the vast amount of
archived video currently in existence.
Automation of content in hypertext is a well-researched
area [10, 11, 13]. While much work has been done in the
realm of context-assisted anchor creation in video,
particularly in news coverage videos, these rely on a blend

of modal data, including much that is manually entered by
human operators [12, 15, 20, 21].
We are more interested in identifying issues related to
nearly context-free object tracking within image streams.
The image analysis engine selected for use on the video,
or the user manually creating links, supplies the context. A
facial recognition system designed to attribute a link to a
database record consists of an entirely different inherent
context than an engine which identifies and tracks types of
automobiles on a roadway, but they both can operate
equally well on the same raw video stream. This is a
complementary concept to contentoriented navigation
[14], where the context is provided during modal analysis.
Since the context of the link data has been removed from
the dimensions we define, the resultant contextual link
generation engines are also close analogues to Sprocs as
defined by Nürnberg, et al [18].
Text is almost exclusively an archived data source,
authored once and stored, and then presented as pre-
established data to the user. Research into dynamic text
systems is established [11, 16, 19], but it is our opinion
that text will not reach the temporally and spatially
dynamic properties of video in the near future. Video
allows for, and generally requires, different approaches to
anchor generation than does text.

2. SPRITE LINK LAYER OVER VIDEO

The previous OvalTine system did tracking of object sin
video streams in real-time. While this has utility in
creating hypermedia capabilities within previously
inaccessible data domains like video-conferencing, it did
not have enough infrastructure to capture and save all the
calculated link anchors. They were computed frame-by-
frame and then lost as the next frame came along.
To markup archived video for playback, the basic tracking
capabilities of OvalTine had to be augmented with a
capture and storage layer for links.
Our original plan was to enhance our existing OvalTine
application on the SGI IRIX platform, utilizing the
existing support for QuickTime saved movies.
QuickTime is a container file format and access
specification, not a movie codec, and allows for any
QuickTime capable application to handle any media
format for which a codec exists in the rather expansive
QuickTime library. Multiple types of data can be added
to a QuickTime file in tracks, such as video of various
compression schemes, sound data, text, or any other time-
variant information. QuickTime's primary function is to
ensure that these tracks are kept synchronized. To reduce

 4

confusion with the tracking properties of OvalTine, we
will use the term layer in this paper to refer to QuickTime
tracks.
The implementation of QuickTime on IRIX, however,
does not offer support for sprites. In the QuickTime
nomenclature, sprites are object-based animations in a
layer that is separate from, but synchronized with, the
video layer. Sprites are usually used to produce simple
animations, moving a series of static images around a
video field much like traditional cartooning. Sprites exist
in a QuickTime layer of their own, and can be thought of
as an overlay over the video layer. The animations are
separate from the video, so can be included in the user
presentation, or not, by easily toggling a visibility flag.
Each animation can be individually visible or not, or the
entire layer can be toggled at once.
Wired sprites are sprites that react to user interaction,
registering events such as mouse-over (the cursor has been
moved over the sprite by the user), mouse-down (the user
has pressed the mouse button while the cursor is over the
sprite), and mouse-up (the user has released the mouse
button while the cursor is over the sprite). The wired
sprites know their own boundaries and automatically track
when the user is potentially interacting with them. They
also keep track of which actions to perform for which user
events, and these actions can include simple changes to
the presented image, to moving within the movie to
another timecode, opening another movie and jumping to
any timecode within the new movie, and requesting
actions of the system of other applications.
Since the object tracking library has gone through a
redesign to be cross-platform implementable, we have
taken the opportunity to move OvalTine to a more
commercial OS with stronger QuickTime support,
including wired sprites. The rapid application
development environment of MacOS X is the current
choice for development. The user interface is designed to
be minimal at this stage as we investigate options for
redesign of the original real-time tracker interface as well.
Wired sprites offered exactly what we needed to make a
video markup layer � frame-by-frame synchronization, an
overlay layer to contain the tracked object regions, with
visibility toggling, built-in hit (click) detection, and 'link'
traversal to trigger actions on a successful click by the
user viewing the movie file. The file format is openly
published, and QuickTime is fully supported on several
platforms, including the various versions of Windows, and
the two MacOS variants.
The OvalTine tracker system makes calls to the
QuickTime library as it tracks objects in a frame. As an
object�s new location is discovered by the tracker, its
coordinates are transmitted to the sprite layer and
recorded. When tracking is completed, the sprite layer

information is incorporated into the QuickTime playback
so the user sees the original video frame as well as the
overlaid sprite annotations. In the next section we discuss
the association of link targets (URLs) with the wired
sprites.

2.1 Example markup session

A sample session might involve a user loading a video
stream, perhaps an existing news archive footage file. The
goal is to add hyperlinks to the video pointing to
biographical information for selected subjects in the
video. The user begins by selecting a QuickTime file to
work on through use of the Open... menu item. The movie
appears in the video view, at the first frame. The user
uses the standard movie controller interface to move to the
segment of the video they wish to begin tracking in. The
editing mode is chosen from radio button palette, and a
rectilinear box is drawn around the face to be tracked. An
oval will appear around the face to indicate that the
tracker has acquired it If the registration of the oval to the
face is not pleasing to the user, they can simply choose the
Undo menu item, and select again.
Once the object has been selected appropriately, the user
can add the necessary tag information to be used when the
object is later clicked on during playback. The Links
window contains bookmarks to items the user may wish to
add to an anchor, including http URLs for browser
viewing, file URLs for local file viewing, or movie URLs
that trigger movement to another time-code in the current
movie; they might also open another movie and jump to a
particular time-code in it. A link can be dragged and
dropped onto the oval desired to be its trigger.
The user can now initiate a frame by frame tracking by
selecting Track from the File menu or toggle the Track
button in the main window. As the tracker acquires the
face in each frame, its reported position is displayed as an
overlay over the movie. At the same time, the sprite,
consisting of the oval, is saved to the movie data in
memory. If the user at any time is unhappy with the
tracking performance, they can stop the process, scan back
to the first frame they feel is incorrect (again, using the
standard movie controls), and re-select and re-initiate
tracking. When the user is satisfied with the results of the
tracking, the movie can be saved back to disk. Any
QuickTime capable application will now be able to show
the tracked face in the movie, and register hits on the face
if clicked upon. The action on link traversal will be
dependent on the capabilities of the particular viewer
application. A web browser will be able to traverse
URLs, for instance.

 5

Figure 1. OvalTine user interface showing two tracked objects

Figure 2. Two links on one tracked object, showing targets displayed

 6

3. USER INTERFACE EXAMPLES

OvalTine is set up to allow link markup of stored video as
an editing task. Figure 1 shows the video display window,
the properties window, and the URLs window. The video
display window presents the video data and shows the
tracked objects as (optionally) outlined ovals. For real-
time applications, such as video conferencing discussed
previously [1], the playback controls would be
inoperative. For markup of stored video, the user can do
the standard start, stop, pause, and slider frame selection
operations on the video stream.
The tracking properties window allows the user to select
the type(s) of tracking algorithms to apply to the video
frames. OvalTine�s architecture has been structured with
well-known design patterns [2], allowing multiple tracking
algorithms to be chained together and applied in sequence.
A user can even apply a different chain of trackers to each
different oval if desired; OvalTine spawns a separate
tracking thread for each oval. Some trackers work better
than others in varying images; the selection of specific
trackers to use depends on image properties such as color
variability, background complexity, object motion,
texture, etc.
Once a link anchor (oval) has been established in the
video window, the user can associate one or more URLs
with that anchor to be targets of the link(s). These URLs
show up in the URL window in the lower left. Figure 1
shows one URL for each oval, and the association is made
by the color of the tag.
Editing progresses as described in the previous section.
The user selects a starting frame with the slider controls,
and then designates one or more objects to be tracked.
The video is started with the �track� button, and the
tracker chain for each oval causes the link anchors to
follow the objects as they move in the video frame. The
sprite infrastructure captures the layout information
needed to maintain the link anchors in association with the
video data. At any point the user may pause the video,
add or delete ovals, and continue with tracking.
URLs can be added to the tracked objects at any point,
either during tracking, or during playback editing of the
marked-up video data. Though not shown, ovals can be
linked to any first-class Web data, including another
OvalTine video clip. There is also a �lost� link palette
(not shown) that collects the URLs associated with objects
that are being tracked, but move out of the video window.
Any URLs associated with such an object are taken out of
the URL window and saved in the �lost� list. This is a
convenience that makes it easier for the user to re-

associate these URLs if the tracked object should reappear
in the video window and need to be tracked again.
Figure 2 shows OvalTine in use while viewing a marked-
up video stream. Here we see a CNN clip where the face
of the reported has been annotated with 2 different links.
One link is to the CNN home page (seen displayed in the
background). The other link is to an article and map on
Pakistan, which is the topic of the video; this page is
shown in the foreground.
There are several ways to manage multiple links on each
oval. One is to simply left-click the mouse on the oval in
the video window. This will cause the top link in its URL
list (shown in the URL window, lower left) to be followed
and displayed. Another method is to right-click on the
oval and a pop-up menu will present all the URLs for that
oval for selection of one to follow. A third method is to
directly click on the desired URL in the URL window;
these URLs are only displayed in the window while their
associated ovals are in the video window. In the editing
mode (as opposed to playback) the order of URLs in the
URL window for each oval can be rearranged via click-
and-drag operations so that new defaults can be
established.
Finally, there is a mode the user can select during editing
that causes all the associated links on an object to be
followed concurrently when an oval is left-clicked. Each
link target will be displayed in a separate browser
window. This mode is related to the concurrent and
synchronized browsing possible with the multi-
head/multi-tail links found in MMM [5,6] and first studied
in Trellis [3, 4].

4. OVALTINE SYSTEM ARCHITECTURE

After the initial prototype was operating, we spent time re-
architecting and re-implementing OvalTine to make the
tool more adaptable to new tracking approaches and to
adhere to good design patterns [2]. The resulting second
prototype is robust and extensible.
We initiated a redesign of the code and functionality in
January of 2001, and finished in late March of the same
year, converting approximately 15,000 lines of C++ code
of varying quality in some rather extreme ways. Design
patterns were critical in the redesign and re-
implementation phase, and used throughout the system.
OvalTine started as a conglomeration of two very
different sets of code. One, called MediaConf, is a
demonstration video conferencing app from Silicon
Graphics that runs on their line of O2 workstations. The
other was a half-completed (and quite broken) set of code

 7

Figure 3: Strategy pattern for extensible trackers

Figure 4: Composite pattern for chainable tracker

 8

from Stanford University illustrating a way of tracking
heads and faces in real-time video on a specific
proprietary video card on the Windows platform. The
work involved in taking these two utterly different bodies
of code and making them work together was tremendous,
not the least of which was involved in just making them
work at all independently.
Once we had the code working well enough for demos, we
decided to re-factor and rewrite the system, since it utterly
failed to meet our original vision. What we wanted was a
flexible research platform that would run on multiple OSs,
would handle video feeds from live cameras, stored files,
or from a network feed, would allow different tracking
algorithms to be experimented with in a freeform manner,
and would be extremely simple to use and develop with.
Instead what we had was a system that was incredibly
fragile, had one hard-coded algorithm for tracking, ran
only on the SGI O2 platform (and then only on certain OS
versions), and was limited to a live local video feed.
The reworking effort was done from the viewpoint of
using design patterns as a springboard for system
architecture design, as well as guiding implementation.
These patterns gave the architecture the following
properties:

• Extensible algorithm system for object tracking
in the video stream... algorithms should be easily
added to the pool for selection, and should work
interchangeably

• Algorithms should be chainable for efficient pre
and post processing

• Dynamic selection of algorithms, preferably on
the fly during execution, but a simple selection
process for configuration at launch is acceptable

• The video tracking library should have a simple
external API

• The video tracking library should be completely
separated from any GUI, front end app, or IO,
except as through the above API

• The video tracking library should be cross-
platform

While each requirement created specific patterns in our
new architecture, the first two (extensible trackers,
chainable trackers) are of particular interest to a
hypervideo audience. We therefore examine each property
in more detail in the following sections.

4.1 Extensible tracking algorithms

One of the most critical components needed in the
redesign was to allow new tracking algorithms to be added
to the system as imaging researchers develop them. This
exactly corresponds to the Strategy pattern, whose intent
is given in the patter literature as:

 "Define a family of algorithms, encapsulate each
one, and make them interchangeable."

As new concepts in identifying object in an image are
developed, OvalTine can be extended without being
abandoned or re-written. Extensions can be done by
hypervideo designers with OO programming skills; it
involves writing new classes with the same basic form as
the existing trackers, and adding their compiled for to the
class libraries.
Figure 3 shows the full design pattern diagrams for the
Strategy pattern that give OvalTine extensibility in tracker
algorithms. By looking at the structure of the pattern in
these diagrams, we can quickly start identifying the basic
concept classes to fulfill the roles: Context is our Tracker
system, Strategy is an abstract base class corresponding to
our idea of a SearchEngine, and the ConcreteStrategy
roles will be filled by the actual algorithms. In our initial
situation, we have one algorithm, which we called
BirchfieldSearchEngine, after the author of the describing
paper.

4.2 Chainable trackers

The BirchfieldSearchEngine is actually a hybrid tracking
algorithm that uses two separate approaches: a gradient
based edge detection algorithm to find an oval shape
corresponding to a head; and a color histogram approach
that detects the face itself through a visual field analysis.
We wanted to compare the performance of the
BirchfieldSearchEngine against the individual algorithms
comprising it, but unfortunately the conglomerated
algorithm was originally written as a monolithic piece of
code. We considered writing two completely new
engines, to recreate the two algorithms, but decided that
this was a poor way of reusing the concepts, since we
would be reusing no code.
What was needed was a way to have
BirchfieldSearchEngine reuse the code from the other
engines, instead of attempting to reuse the code from the
hybrid. This would necessitate a SearchEngine class
calling two other SearchEngines, and using the results to
create a third set of tracking feedback. This meets the
criteria for applying the Composite pattern:

"Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects
uniformly."

Figure 4 shows the design pattern diagrams for the
Composite we use to give OvalTine chainable trackers.
The structure of the pattern is straightforward, where the
Client role is naturally again that of Tracker, the
Component is a SearchEngine, the class fulfilling the

 9

Composite role we will call blandly enough
CompositeSearchEngine, and the Leaf role will be our
various SearchEngines that do the actual tracking.
This feature allows OvalTine to track objects by passing
image information from a frame though several different
tracking algorithms in series. Each has the opportunity to
decide if an object appears in the image or not, either
using the data on its own or by using the conclusions of a
prior tracker.
We also spawn a new thread for each object being
tracked. This allows a different chain of trackers to be
applied to each different object, if such is desired. It
might, for example, be easier to track faces with one
combination of algorithms, and easier to track rectilinear
objects (books, signs, etc.) with a different set of
algorithms. OvalTine will support this variance.

5. CONCLUSIONS

OvalTine was previously a system for tracking objects in
real-time video streams (video conferences) and allowing
hyperlink anchors to be associated with these tracked
objects. We have described here the further use of
OvalTine for automatically tracking objects in stored
video streams, thereby allowing automated markup of
archived video data with hyperlinks. Extending OvalTine
from real-time to archived video required a link layer to
capture and maintain the link anchors are they are tracked
from frame to frame; in the previous work, this
information was available at each instant, but lost as one
frame progressed to the next.
We created such a link layer on top of the basic OvalTine
tracker using the Sprites of Apple�s QuickTime standard.
We also re-built OvalTine using good OO design patterns
to allow hypervideo creators to extend the basic object
tracking algorithms with their own work.
Our work has concentrated on producing the software
needed to automate link productions and capturing this
information for playback. We have not yet concentrated
on new tracking algorithms for tracking objects other than
ovoids with color histograms similar to faces. Work
remains to be done to extend our library of trackers to full
generality.
OvalTine is a demonstratable system and can be shown in
operation at the conference.

6. REFERENCES

[1] Smith, J., D. Stotts, and S.-U. Kum, "An Orthogonal
Taxonomy for Hyperlink Anchor Generation in Video Streams

using OvalTine," Proc. of Hypertext 2000 (ACM), May, 2000,
San Antonio, Texas, pp. 11-18.

[2] Gamma, Helm, Johnson, and Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[3] Stotts, P.D., and R. Furuta, "Petri Net Based Hypertext:
Document Structure with Browsing Semantics," ACM Trans. on
Information Systems (ACM), vol. 7, no. 1, January 1989, pp. 3-
29.

[4] Furuta, R., and P. D. Stotts, "Programmable Browsing
Semantics in Trellis," Proc. of Hypertext '89 (ACM), Pittsburgh,
November 1989, pp. 27-42.

[5] Capps, M., B. Ladd, D. Stotts, "Enhanced Graph Models in
the Web: Multi-client, Multi-head, Multi-tail Browsing,"
Computer Networks and ISDN Systems, vol. 28 (Proc. of the
5th WWW Conf., May 6-10, 1996, Paris), pp. 1105-1112.

[6] Ladd, B., M. Capps, D. Stotts, and R. Furuta, "Multi-
head/Multi-tail Mosaic: Adding Parallel Automata Semantics to
the Web," World Wide Web Journal, O'Reilly and Associates
Inc., vol. 1 (Proc. of the 4th International WWW Conference,
Boston, December 11-14, 1995), pp. 433-440.

[7] Sawhney, N., D. Balcom, and I. Smith, �HyperCafe:
Narrative and Aesthetic Properties of Hypervideo�, Hypertext
�96 Proceedings, ACM, Washington, D.C., 1996, pp. 1-10.
[8] Francisco-Revilla, L., �A Picture of Hypervideo Today�,
http://www.csdl.tamu.edu/~l0f0954/academic/cpsc610/p-1.htm,
1998.
[9] Apple Computer, �Introduction to Wired Movies, Sprites,
and the Sprite Toolbox�, http://developer.apple.com/techpubs/
quicktime/qtdevdocs/REF/refWiredIntro.htm
[10] Bernstein, M., �An apprentice that discovers hypertext
links�, Hypertext: Concepts, systems and applications:
Proceedings of the European conference on Hypertext, INRIA,
France, 1990, pp. 212-223.
[11] Bernstein, M., J. D. Bolter, M. Joyce, and E. Mylonas,
�Architectures for Volatile Hypertext�, Hypertext �91
Proceedings, ACM, San Antonio, TX, 1991, pp. 243-260.
[12] Boissière, G., �Automatic creation of hypervideo news
libraries for the World Wide Web�, Hypertext �98 Proceedings,
ACM, Pittsburgh. PA, 1998.
[13] Glushko, R.J., �Design issues for multi-document
hypertexts�, Hypertext �89 Proceedings, ACM, Pittsburgh, PA,
1989, pp. 51-60.
[14] Hirata, K., Y. Hara, H. Takano, and S. Kawasaki,
�Contentoriented Integration in Hypermedia Systems�,
Hypertext �96 Proceedings, ACM, Bethesda, MD, 1996, pp. 11-
21.
[15] Ip, H. H., and S. Chan, �Hypertext-Assisted Video
Indexing and Content-based Retrieval�, Hypertext �97
Proceedings, ACM, Southhampton, UK, 1997, pp. 232-233.

 10

[16] Kendall, R., �Hypertext dynamics in A Life Set for Two�,
Hypertext �96 Proceedings, ACM, Bethesda, MD, 1996, pp. 74-
84.
[17] Liestøl, Gunnar, �Aesthetic and Rhetorical Aspects of
Linking Video in Hypermedia�, Hypertext �94 Proceedings,
ACM, 1994, pp. 217-223.
[18]. Nürnberg, P. J., J. J. Leggett, E. R. Schneider, �As We
Should Have Thought�, Hypertext �97 Proceedings, ACM,
Southhampton, UK, 1997.

[19] Stotts, P. D., and R. Furuta, �Dynamic adaptation of
hypertext structure�, Hypertext �91 Proceedings, ACM, San
Antonio TX, 1991, pp. 219-232.
[20] Zhang, H.J., et al., �Automatic Parsing and Indexing of
News Video�, Multimedia Systems, 2 (6), pp. 256-266, 1995.
[21] Zhang, H.J., C.Y. Low, S.W. Smoliar, and J.H. Wu, �Video
Parsing, Retrival and Browsing: An Integrated and Content-
Based Solution�, Multimedia �95 Proceedings, ACM, 1995, pp.
15-24.
[22] Multimedia Systems Lab at IISc, �Object tracking and
hypervideo�, http://serc204a.serc.iisc.ernet.in/research/track.htm

