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Abstract

Combining image segmentation based on statistical classification with a geometric prior has been shown to significantly increase robustness
and reproducibility. Using a probabilistic geometric model of sought structures and image registration serves both initialization of probability
density functions and definition of spatial constraints. A strong spatial prior, however, prevents segmentation of structures that are not part
of the model. In practical applications, we encounter either the presentation of new objects that cannot be modeled with a spatial prior or
regional intensity changes of existing structures not explained by the model.

Our driving application is the segmentation of brain tissue and tumors from three-dimensional magnetic resonance imaging (MRI). Our
goal is a high-quality segmentation of healthy tissue and a precise delineation of tumor boundaries. We present an extension to an existing
expectation maximization (EM) segmentation algorithm that modifies a probabilistic brain atlas with an individual subject’s information
about tumor location obtained from subtraction of post- and pre-contrast MRI. The new method handles various types of pathology, space-
occupying mass tumors and infiltrating changes like edema. Preliminary results on five cases presenting tumor types with very different
characteristics demonstrate the potential of the new technique for clinical routine use for planning and monitoring in neurosurgery, radiation
oncology, and radiology.

I. Introduction

The segmentation of medical images, as opposed to natural scenes, has the significant advantage that structural and
intensity characteristics are well known up to a natural biological variability or the presence of pathology. Most common
is pixel- or voxel-based statistical classification using multiparameter images [1], [2]. These methods do not consider
global shape and boundary information. Applied to brain tumor segmentation, classification approaches have met with
only limited success [3], [4] due to overlapping intensity distributions of healthy tissue, tumor, and surrounding edema.
Often, lesions or tumors were considered as outliers of a mixture Gaussian model for the global intensity distribution,
[5], [6], assuming that lesion voxels are distinctly different from normal tissue characteristics. Other approaches involve
interactive segmentation tools [7], elastically fitting boundaries [8], mathematical morphology [9], neural networks [10],
or calculation of texture differences between normal and pathological tissue [11].

A geometric prior can be used by atlas-based segmentation, which regards segmentation as a registration problem in
which a fully labeled, template MR volume is registered to an unknown dataset. High-dimensional warping results in a
one-to-one correspondence between the template and subject images, resulting in a new, automatic segmentation. These
methods require elastic registration of images to account for geometrical distortions produced by pathological processes.
Such registration remains challenging and is not yet solved for the general case.

Warfield et al. [12], [13] combined elastic atlas registration with statistical classification. Elastic registration of a brain
atlas helped to mask the brain from surrounding structures. A further step uses “distance from brain boundary” as
an additional feature to improve separation of clusters in multi-dimensional feature space. Initialization of probability
density functions still requires a supervised selection of training regions. The core idea, namely to augment statistical
classification with spatial information to account for the overlap of distributions in intensity feature space, is part of the
new method presented in this paper.

Leemput et al. [14], [15] developed automatic segmentation of MR images of normal brains by statistical classification,
using an atlas prior for initialization and also for geometric constraints. A most recent extension detects brain lesions
as outliers [16] and was successfully applied for detection of multiple sclerosis lesions. Brain tumors, however, can’t be
simply modeled as intensity outliers due to overlapping intensities with normal tissue and/or significant size.

We propose a fully automatic method for segmenting MR images presenting tumor and edema, both mass-effect and
infiltrating structures. This method builds on the previously published work done by [14], [15]. Additionally, tumor and
edema classes are added to the segmentation. The spatial atlas that is used as a prior in the classification is modified
to include prior probabilities for tumor and edema. As with the work done by other groups, we focus on a subset of
tumors to make the problem tractable. Our method provides a full classification of brain tissue into white matter, grey
matter, cerebrospinal fluid (csf), tumor, and edema. Because the method is fully automatic, its reliability is optimal.

II. Expectation Maximization Segmentation

An algorithm for fully automatic segmentation of normal brain tissue using an expectation maximization (EM)
algorithm has been previously developed by [14], [15]. This algorithm interleaves probability density function (pdf)
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Fig. 1. SPM atlas providing spatial probabilities. From left to right: white matter, gray matter, csf, template T1 image for registration.

Fig. 2. Left: Registered dataset showing a malignant glioma. From left to right: T1 post-contrast, T1 pre-contrast, T2. The tumor (mostly)
enhances with contrast agent in the post-contrast image. Also note the edema surrounding the tumor. Right: Segmentation of dataset using
EMS algorithm for healthy brains.

estimation for each tissue class (gray matter, white matter, and csf), classification, and bias field correction using the
classic EM approach. The equation for the classification step is

p(Γi = j|yi, θ) =
p(yi|Γi = j, θj)p(Γi = j)∑
k p(yi|Γi = k, θk)p(Γi = k)

(1)

where yi is the intensity at voxel i, and Γi is the class of voxel i.
The EM segmentation algorithm (EMS) uses a spatial atlas from the Statistical Parametric Mapping (SPM) package

for initialization and classification. The SPM atlas contains spatial probability information for brain tissues. It was
created by averaging segmentations of normal subjects that had been registered by an affine transformation (Fig. 1).

This spatial atlas is registered to the patient data, with an affine transformation, providing spatial prior probabilities
for the tissue classes. The pdfs are then initialized based on the atlas probabilities. This allows the algorithm to be fully
automatic. The atlas is also used as the prior probability p(Γi = j) during the classification step (Eq. 1).

III. Application of EMS to Tumors

When a dataset contains a tumor (see Fig. 2 left), there are several problems with the EMS algorithm described in
section II. First, the atlas used does not contain a spatial prior for tumor tissue. The atlas is a normal brain atlas, and
cannot be used directly in the presence of pathology. When the atlas is used as a spatial prior for tissue classification,
all brain tissue must be classified as one of the available tissue types, either white matter, gray matter, or csf (see Fig.
2 right). Second, tumors are often accompanied by edema, which is a swelling of normal tissue surrounding the tumor,
and which changes the tissue properties in that area. The amount and regional extent of edema that accompanies a
tumor is variable. Edema or infiltrating phenomena in general are also not explained by the SPM atlas.

As one would expect, making certain assumptions and using prior knowledge can help greatly in the problem of
segmenting brain tumors. We make some important simplifying assumptions for our segmentation framework.

Tumor Characteristics: We assume that tumors are ring-enhancing or fully enhancing with contrast agent. The
major tumor classes that fall in this category are meningiomas and malignant gliomas. The basic characteristics of
meningiomas are a) smooth boundaries b) normally space occupying and c) smoothly and fully enhancing with contrast
agent. The basic characteristics of malignant gliomas are a) ragged boundaries, b) initially only in white matter, possibly
later spreading outside white matter, c) only margins enhance with contrast agent, and d) accompanied by edema.

MR Sequences: We assume that all datasets analyzed include a T1 pre-contrast image, a T1 post-contrast image
(both with 1×1×1.5mm3 voxel dimensions), and a T2 image (1×1×3mm3 voxel dimensions) (Fig. 2). This inter-slice
spacing is the standard protocol at the hospitals where our datasets were acquired. All of our data are acquired on
Siemens 1.5T and 3T scanners.

IV. Extension of the EMS Algorithm

We have extended the EMS algorithm in three significant ways. The first modification is the addition of a tumor
class and an edema class. Second, while the original EMS algorithm is not dependent on the number or type of input
channels, our algorithm depends on T1 pre- and post-contrast images. The T1 images are necessary because information
is extracted from their difference image. The T2 image simply makes the segmentation more robust. The gadolinium
enhanced T1 image is not used as a channel for classification but only provides information through the difference
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Fig. 3. Left: A T1 pre- and post-contrast difference histogram. Center: The histogram is fit with two Gaussian distributions and a gamma
distribution. The gamma distribution represents the enhanced voxels in the post-contrast image. Right: The posterior probability of the
gamma distribution (shown along with the scaled histogram) gives the probability that a voxel in the post-contrast image is enhanced. This
probability is used to create a spatial prior for tumor tissue.

image. This strategy is reasonable because, in theory, the gadolinium enhanced T1 image does not provide any extra
information in addition to the pre-contrast T1 image except what the difference image provides. Other modalities can
be used in addition to the T1 and T2 images. Finally, we modify the spatial atlas to allow for the tumor and edema
classes.

A. Tumor Class

In addition to the three tissue classes assumed in the EMS segmentation (white matter, grey matter, csf), we add
a new class for tumor tissue. Whereas the (spatial) prior probabilities for the normal tissue classes are defined by the
atlas, the spatial tumor prior is calculated from the T1 pre- and post-contrast difference image. We assume that the
(multiplicative) bias field is the same in both the pre- and post-contrast images. Using the log transform of the T1 pre-
and post-contrast image intensities then gives a bias-free difference image, since the bias fields (now additive) in the two
images cancel out.

Difference Image Histogram: The histogram of the difference image shows a peak around 0, corresponding to
noise and subtle misregistration, and a positive response corresponding to contrast enhancement (see Fig. 3 left). We
would like to determine a weighting function, essentially a soft threshold, that corresponds to our belief that a voxel is
contrast enhanced. We calculate a mixture model fit to the histogram. Two Gaussian distributions are used to model
the normal difference image noise, and a gamma distribution is used to model the enhanced tissue. The means of the
Gaussian distributions and the location parameter of the gamma distribution are constrained to be equal (see Fig. 3
center).

Tumor Class Spatial Prior: The posterior probability of the gamma distribution representing contrast enhance-
ment (Fig. 3 right) is used to map the difference image to a spatial prior probability image for tumor. This choice
of spatial prior for tumor causes tissue that enhances with contrast to be included in the tumor class, and prevents
enhancing tissue from cluttering the normal tissue classes. We also maintain a low base probability (5%) for the tumor
class across the whole brain region. In many of the cases we have examined, the tumor voxel intensities are fairly well
separated from normal tissue in the T1 pre-contrast and T2 channels. Even when contrast agent only causes partial
enhancement in the post-contrast image, the tumor voxels often have similar intensity values in the other two images
(see Fig. 2 left). Including a small base probability for the tumor class allows non-enhancing tumor to still be classified
as tumor, as long as it is similar to enhancing tumor in the T1 and T2 channels. The normal tissue priors are scaled
appropriately to allow for this new tumor prior, so that the probabilities still sum to 1.

B. Edema Class

We also add a separate class for edema. Unlike tumor structures, there is no spatial prior for the edema. As a
consequence, the probability density function for edema cannot be initialized automatically. We approach this problem
as follows: First, we have found that edema, when present, is most evident in white matter. Also, we noticed from tests
with supervised classification that the edema probability density appears to be roughly between csf and white matter
in the T1/T2 intensity space (see Fig. 4). We create an edema class prior that is a fraction of the white matter spatial
prior (20%, obtained experimentally). The other atlas priors are scaled to allow for the edema prior, just as for the
tumor prior. The edema and the white matter classes share the same region spatially, but are a bimodal probability
density composed of white matter and edema.

During initialization of the class parameters in a subject image, we calculate the estimates for gray matter, white
matter, csf, tumor and edema using the modified atlas prior. Thus, white matter and edema would result in similar
probability density functions. The bimodal distribution is then initialized by modifying the mean value for edema to be
between white matter and csf, using prior knowledge about properties of edema.
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Fig. 4. Feature-space analysis of the T1 and T2 slices from Fig. 2. Left: Segmentation. Right: Scatterplot of the two slices, with colors
corresponding to the segmentation. X axis is T2 intensity, Y axis is T1 intensity.

Fig. 5. Left: Two segmented datasets containing malignant glioma (top) and meningioma (bottom), with T1 post-contrast images for
reference. Blue = white matter, green = grey matter, yellow = csf, orange = edema, red = tumor. Right: Three-dimensional rendering of
segmented tumor (yellow), white matter tissue (red) and surrounding cortical gray matter (light gray).

V. Results

We have applied our tumor segmentation framework to five different datasets, including a wide range of tumor types
and sizes. All datasets were registered to the SPM atlas using mutual information registration as described by [17].
Fig. 5 shows results for two datasets. Because the tumor class has a strong spatial prior, many small structures, mainly
blood vessels, are classified as tumor because they enhance with contrast. Post-processing using level set evolution is
necessary to get a final segmentation for the tumor [18]. Fig. 6 shows the final spatial priors used for classification of
the dataset in Fig. 2 with the additional tumor and edema channels.

VI. Conclusions

We have developed a model-based segmentation method for segmenting head MR image datasets with tumors and
infiltrating edema. This is achieved by extending the spatial prior of a statistical normal human brain atlas with
individual information derived from the patient’s dataset. Thus, we combine the statistical geometric prior with image-
specific information for both geometry of newly appearing objects, and probability density functions for healthy tissue
and pathology. Applications to five tumor patients with variable tumor appearance demonstrated that the procedure
can handle large variation of tumor size, interior texture, and locality. The method provides a good quality of healthy
tissue structures and of the pathology, a requirement for surgical planning or image-guided surgery (see Fig. 5 right).
Thus, it goes beyond previous work that focuses on tumor segmentation only.

Currently, we are testing the validity of the segmentation system in a validation study that compares resulting tumor

Fig. 6. Spatial prior for the dataset in Fig. 2, created from the SPM atlas and the T1 pre- and post-contrast difference image. From left to
right: white matter, grey matter, csf, tumor, edema.
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structures with repeated manual experts’ segmentations, both within and between multiple experts. A preliminary
machine versus human rater validation showed an average overlap ratio of > 90% and an average MAD (mean average
surface distance) of 0.8mm, which is smaller than the original voxel resolution.

In our future work, we will study the issue of deformation of normal anatomy in the presence of space-occupying
tumors. Within the range of tumors studied so far, the soft boundaries of the statistical atlas could handle spatial
deformation. However, we will develop a scheme for high dimensional warping of multichannel probability data to get
an improved match between atlas and patient images.
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