

Fast 3D Geometric Proximity Queries between Rigid and

Deformable Models Using Graphics Hardware Acceleration
Kenneth E. Hoff III, Andrew Zaferakis, Ming Lin, Dinesh Manocha

University of North Carolina at Chapel Hill
{hoff,andrewz,lin,dm}@cs.unc.edu

Abstract
We present an approach for computing generalized proximity information between arbitrary polygonal models using graphics
hardware acceleration. Our algorithm combines object-space localization, multi-pass rendering techniques, and accelerated distance
field computation to perform complex proximity queries at interactive rates. It is applicable to any closed, possibly non-convex,
polygonal object and requires no precomputation, making it suitable for both rigid and dynamically deformable geometry of relatively
high complexity. The proximity queries include, not only collision detection, but also the computation of intersections, minimum
separation distance, closest points, penetration depth and direction, and contact points and normals. The load is balanced between
CPU and graphics subsystems through a hybrid geometry and image-based approach. Geometric object-space techniques coarsely
localize potential interactions between two objects, and image-space techniques accelerated with graphics hardware provide the low-
level proximity information. We have implemented our system using the OpenGL graphics library and have tested it on various
hardware configurations with a wide range of object complexities and contact scenarios. In all cases, interactive frame rates are
achieved. In addition, our algorithm’s performance is heavily based on the graphics hardware computational power growth curve
which has exceeded the expectations of Moore’s Law for general CPU power growth.

1. Introduction
Many applications of computer graphics or computer simulated
environments require spatial or proximity relationships between
objects. In particular, dynamic simulation, haptic rendering, surgical
simulation, robot motion planning, virtual prototyping, and computer
games often need to perform different proximity queries at interactive
rates. The set of queries include collision detection, intersection,
closest point computation, minimum separation distance, penetration
depth, and contact points and normals. Algorithms to perform
different queries have been well studied in computer graphics, virtual
environments, robotics and computational geometry. Most of the
current approaches involve considerable pre-processing and therefore
are not fast enough for deformable models. Furthermore, no good
algorithms are known for penetration depth computation between
general, non-convex models.

We present a novel approach to perform all the proximity queries
between rigid and deformable models using graphics hardware
acceleration. Our algorithm localizes potential interactions using
object-space techniques, point-samples the region, and then uses
polygon rasterization hardware to compute object intersections,
closest points, and the distance field and its gradients.

The main features of our approach include a unified framework for all
proximity queries, applicability to non-convex polygonal models,
computational efficiency allowing interactive queries on current PCs,
robustness in terms of not dealing with any special-cases or
degeneracies, and portability across various CPU/graphics
combinations. A user-specified error threshold for pixel point
sampling density and distance approximation governs the accuracy of
the overall approach. Some of the novel features of our approach
include:

• Improved and efficient construction of distance meshes used to
compute 3D Voronoi diagrams accelerated with graphics hardware.

• Site culling algorithms and distance mesh culling for increased
performance of Voronoi computation.

• Improved graphics hardware acceleration of computing the
intersection between two, possibly non-convex, polygonal objects,
over an entire volume.

• Improved algorithm for computing 3D image-space intersections
that handles both inter-object and self-collisions.

• Computation of the gradients of the distance field using graphics
hardware.

We have implemented our algorithm on various hardware
configurations, and demonstrate its performance to compute different
queries between rigid and dynamically deforming polygonal objects.
Our approach is well suited for computing proximity query
information needed for collision responses between dynamic
deformable models. The use of graphics hardware allows us to
perform different queries at interactive rates on complex deformable
models. Moreover, it is relatively simple to implement all these
queries in a robust manner. Over the last decade, the graphics
processors (GPUs) processing power has been progressing at a rate
faster than the CPUs and this will result in handling even more
complex scenarios at interactive rates.

2. Related Work
Algorithms for computing collisions, intersections, and minimum
separation distances have been extensively researched. Many are
restricted to convex objects [Cameron 97, Ehmann01, Gilbert88,
Lin91, Mirtich98] or are based on hierarchical bounding-volume or
spatial data structures that require considerable precomputation and
are best suited for rigid geometry [Hubbard93, Quinlan94,
Gottschalk96, Johnson98, Klosowski98]. Some algorithms handle
dynamically deforming geometry by assuming that motion is
expressed as a closed form function of time [Snyder93] or by using
very specialized algorithms [Baraff92]. In our approach, we
emphasize the handling of non-convex, dynamically deformable
objects with no precomputation or knowledge of object motions. In
addition, we obtain computational complexity that grows linearly with
geometric complexity for a fixed error tolerance and contact scenario.

2 Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration

As compared to collision detection and separation distance
computation, there is relatively little work on penetration depth
computation. Penetration depth is typically defined as the minimum
translational distance needed to separate two objects. We define it
with respect to a point as the minimum translational distance and
direction needed to separate a penetrating point from an object’s
interior. Dobkin et al. have presented an algorithm to compute the
intersection depth of convex polytopes, though no practical
implementation is known [Dobkin93]. Cameron has presented a
practical algorithm that computes an approximate depth for convex
polytopes [Cameron97]. No practical algorithms are known for
general, non-convex polyhedra.

Our algorithm relies on the computation of discretized distance fields
and graphics hardware-accelerated geometric computation. Distance
fields - scalar fields that specify minimum distance to a shape for all
points in the field - have been used for many applications in graphics,
robotics and manufacturing [Frisken00, Fisher01]. Common
algorithms for distance field computation are based on level sets
[Sethian96] or adaptive techniques [Frisken00]. However, they either
require static geometry, extensive preprocessing, or lack tight error
bounds. Graphics hardware has been used to accelerate a number of
geometric computations, such as visualization of constructive solid
geometry models [Goldfeather89], cross-sections and interferences
[Rossignac92], and computation of the Minkowki sum [Kaul92].
However, these only compute intersections, not distance-related
queries. Algorithms also exist for motion planning using graphics
hardware acceleration and distance fields [Kimmel98, Lengyel90,
Pisula00]. More recently, an algorithm has been proposed to compute
generalized Voronoi diagrams and distance fields using graphics
hardware [Hoff99]. Its application to motion planning was presented
in [Pisula00]. Also, proximity queries accelerated using graphics
hardware was presented in [Hoff01], but it was restricted to 2D and its
extension to 3D was not obvious.

2.1 Voronoi and Distance field Computation
In [Hoff99], they present an algorithm for computing approximate 2D
and 3D generalized Voronoi diagrams for polygonal objects with a
variety of distance metrics. The representation is in the form of a
discretized regular grid of sample points (images) across a 2D slice. A
3D Voronoi diagram is composed of a sequence of these slices across
the volume to form a regular 3D grid. At each grid point, the ID of the
nearest site and its associated distance is stored. They accelerate a
brute-force algorithm using graphics hardware.

Instead of relying on a distance evaluation between a point and a
Voronoi site, a polygonal distance mesh is constructed so that when
rendered it computes the correct distance value as the Z-coordinate. If
these distance meshes are rendered for each site with Z-buffer
visibility enabled, the correct comparisons and updates will also be
performed. This reduces the problem to finding a polygonal mesh
approximation of a 2D slice of the distance function. In 3D, the
distance mesh must approximate a 2D slice of the 3D domain.

Their 3D implementation simply used a coarse regular grid with direct
distance evaluations at each grid point. This often required over-
meshing, inefficient direct distance evaluations at grid points, and did
not take advantage of the inherent symmetry in the functions being
approximated. In addition, this approximation did not provide a tight
bound on the approximation and the computation times were on the
order of minutes to hours for high resolution Voronoi diagrams of
complex models.

We extend the 3D distance mesh ideas and formulate a very fast and
efficient bounded error approximation without requiring any lookup
tables or complex data structures. In addition, we present methods for
greatly accelerating the distance evaluations through culling
techniques.

2.2 2D Proximity Queries using Graphics HW
In [Hoff01], they presented an approach using the graphics hardware
based Voronoi computation for performing more general proximity
queries, such as those needed in computing collision responses in a
dynamics simulation. This paper focused on the interactions between
2D, possibly non-convex, polygonal objects only, but illustrated the
potential for having a unified framework for a wide range of
proximity queries. Many of the queries supported are particularly
difficult for object-space algorithms, such as computing intersections,
penetrating points, and penetration depths and directions. They used
image-space techniques for performing these queries that were
accelerated using graphics hardware. The core operations were based
on queries into the Voronoi diagram. They presented a pipeline that
allowed load balancing between CPU and graphics subsystems by first
incorporating an object-space geometric localization phase to restrict
the area over which the image-space phase must be performed.

Through improvements in the Voronoi diagram computation, we have
extended this work into 3D. Many additional optimizations were
necessary to make this run well in practice, including: faster and
efficient distance meshing with bounded error, conservative Voronoi
site culling, and making the queries symmetric (query A w.r.t. B is the
same as B w.r.t. A). In addition, we constructed a specialized
algorithm for computing 3D intersections efficiently. Previously in
[Hoff01] for 2D, they relied on pixel overwrite to find intersection
points. For 3D, we used a parity based strategy similar to operations
used in graphics hardware-accelerated visualization of CSG
operations and shadow volumes.

3. Overview of Our Approach
Given a collection of closed 3D polygonal objects, we perform coarse
geometric localization to find rectangular regions of space (axis-
aligned bounding boxes) that contain either potential intersections or
closest feature pairs between objects. We uniformly point-sample
these regions and use polygon rasterization hardware to compute
object intersections, closest points, and the distance field. The distance
field and its gradient vector field provide the distance and direction to
the nearest feature for each point in the localized region, which gives
the contact normals, minimum separation distances, or penetration
depths. Our core algorithm computes the proximity information
between two 3D, possibly non-convex, polygonal objects. Higher-
order curved surfaces are tessellated into polygons with bounded
distance deviation error. In our hybrid approach, there are two top-
level operations:

(1) Geometric object-space operations to coarsely localize potential
intersection regions or closest features

(2) Image-space operations using graphics hardware to compute the
proximity information in the localized regions

Most of our improvements center around Voronoi and distance field
computation since it is by far the most costly operation and is the most
demanding of the graphics hardware. Load balancing between CPU
and graphics subsystems is achieved by varying the coarseness of the
object-space localization and by using object-space culling strategies.
Tighter localized regions result in fewer pixels and a smaller bound on
the maximum distance needed for Voronoi computation, thus reducing
the fill and geometry loads on the graphics pipeline. We can also
balance the load between these two main stages of the graphics
pipeline by shifting the distance error tolerance in the Voronoi
computation between fill and geometry: increasing the pixel resolution
decreases the distance mesh resolution and vice versa. The main parts
of the proximity query pipeline are shown in the following figure:

 Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration 3

object-space
localization: on-the-
fly bounding-volume
hierarchies or spatial
partitioning; trivial

j ti

CPU
image-space
queries: interior
and intersection
pts, Voronoi
diagram, distance
fi ld

Graphics HW

localized region
AABB

2 closed, possibly
non-convex

polygonal objects

proximity info

Main Proximity Query Pipeline

Figure 1: The proximity query pipeline is composed of two main stages: geometric
localization and image-space queries. The most complex queries are performed by
graphics hardware. Each stage can be varied to balance the load between CPU and
graphics subsystems.

4. Object-space Geometric Localization
The image-based queries operate on a uniform 3D grid of sample
points in regions of space containing potential interactions. The
graphics hardware pixel framebuffer is used as a 2D slice of the grid
and the proximity queries become pixel operations, therefore the
performance varies dramatically with the pixel resolution. To avoid
excessive load, a geometric localization step is used to localize
regions of potential interaction or as a trivial rejection stage. This
hybrid geometry/image-based approach helps balance the load
between the CPU and graphics subsystems, giving us portability
between different workstations with varying performance
characteristics. More sophisticated geometric techniques, to tightly
localize potential intersections or closest feature pairs, dramatically
reduce the graphics pipeline overhead, but increases the CPU usage
and the complexity of the algorithm. We use coarse fixed-height
bounding-volume hierarchies to achieve this balance between speed
and complexity, and between CPU and graphics usage.

There are many general and efficient algorithms available for
localizing geometry based on bounding-volume hierarchies
[Gottschalk96, Hubbard93, Johnson98, Quinlan94]. However, for
exact collision detection these algorithms typically perform well only
on static geometry where the hierarchy can be precomputed. In order
to handle dynamic deformable geometry with no precomputation, we
use coarse levels for efficient trivial rejection and obtain reasonable
geometric localization. In addition, we perform lazy evaluation of
relevant portions of the hierarchies while performing the collision or
distance query. A subtree rooted at a particular node is only computed
if its children need to be visited during the query traversal. The trees
are destroyed after every proximity query, and no actual tree data
structures are required since the child nodes are recursively passed to
the query routine. A maximum height of each object tree is used to
balance the CPU and graphics load. Similar algorithms can be
constructed using spatial partitioning rather than bounding-volume
hierarchies. Since the resulting localized region needs to be
rectangular (an axis-aligned cube) to allow simple use of the graphics
hardware, we use a dynamically constructed AABB-tree. With a fixed
number (depth of the tree) of linear passes over the geometry we
obtain reasonable localization.

The typical proximity query is between two objects at a time.
However, it is possible to perform many simultaneous queries for all
objects in an N-body simulation. We could perform the proximity
queries for all objects with one image-space query by using a
localized region that encloses the entire scene. This may be more
efficient in cases when the objects are densely packed with many
complex contacts throughout the space containing the objects. For
example, in a dense rigid body simulation where many objects are
interacting simultaneously (e.g. an asteroid field), a single image-
space query over the entire space may be more appropriate (localized
region is the world bounding box). In addition, as the computational
power of graphics systems continues to overtake the general CPU
power, coarser and simpler localization will be favored.

The geometric localization step may often result in multiple
disconnected regions on each object. In these cases, the proximity
query must be repeated for each localized region. Geometric
localization for intersecting and nearest features can be found by using
existing bounding-volume or spatial partitioning approaches that act

on object boundaries, but finding localized regions around volume
intersections requires a specialized algorithm. At each step of
refinement, the parent bounding box must fully contain the volume
intersection. This can be accomplished by first starting with the
intersection of the top-level object bounding boxes. This intersection
box will surely contain the intersection volume. Now we can refine
this localization by computing the bounding box of the portion of each
object that lies in the current box. We then repeat the process on the
intersection of these two boxes which is also guaranteed to contain the
intersection volume.

5. Image-space Proximity Queries
The proximity queries are simplified using uniform point sampling
inside an axis-aligned bounding box (localized region) and accelerated
with graphics hardware. This image-space approach helps decouple
the objects’ geometric complexity from the computational complexity
for a specified error tolerance. We point-sample the space containing
the geometry within the localized regions with a uniform rectangular
3D grid and perform the queries on this volumetric representation
using graphics hardware acceleration. The image-based queries
include computing intersections between objects, computing the
distance field of an object boundary, and computing the gradient of
the distance field. Variations of these basic operations are used to
perform the remaining queries. The basic pipeline is shown in Figure
2.

The 3D image-space queries avoid excessive data handling when
processing the entire volume of the localized region. Each query must
be performed over the uniform 3D grid, one 2D slice at a time. The
application query information is sent to the application as it is
processed slice-by-slice to avoid processing and storing the entire 3D
image. In addition, many of the queries have been made symmetric to
avoid a second pass as needed in the previous work.

Find interior points of
both objects using
parity-based stencil
test, compute
intersection pts

Graphics HW
Voronoi diagram
computation:
associate isect pts
with closest obj
boundaries,
compute distances
to boundary

Graphics HW

CPU: readback
stencil to get
intersection pts,
find tighter fitting
box around
intersection pts

localized
region: axis-
aligned
bounding box
containing
potential
interactions

CPU: readback
color/depth to get
core proximity
info

Compute gradients
at isect pts using
finite differencing

CPU

Final
proximity
info

Image-Space Proximity Query Pipeline

Figure 2: The most computationally intensive tasks are performed by the graphics
hardware. These stages are also the most difficult for geometric object-space approaches.
We accelerate simple brute-force image-space solutions using graphics hardware to
obtain interactive performance on complex models with no precomputation

5.1 Intersections
We compute intersection points on a 2D slice by performing a parity
test, as is often used in shadow volumes and CSG rendering, using
graphics hardware stencil operations [Crow77, Rossignac92]. In order
to find intersections, we must first be able to identify sample points
that are inside the object. The set of sample points that are inside both
objects form the intersection points between the objects. We then
describe another generalized strategy that can handle intersections
between multiple objects simultaneously along with the more complex
self-intersections.

For any closed object, we can determine if a point is inside the object
by shooting a ray from the point in any direction and counting the
number of times the object’s surface is crossed. If the count is even,
the point is outside of the object; if odd, the point is inside. We can
simultaneously determine which sample points on a 2D planar slice
are interior points by projecting all of the geometry on one side of the
plane onto the plane and counting the number of times pixels are
overwritten. This computation is performed using the graphics
hardware through an odd-even parity test for rendered geometry
clipped by the plane and projected onto the plane. Each time a pixel is
overwritten the parity bit is flipped. Pixels whose stencil bit is set to 1

4 Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration

represent points on the slice that are inside the object. Initially the
stencil buffer is initialized to 0.

5.1.1 Incremental Update and Bucket Sorting

For a single slice, this computation requires rendering all of the
geometry on one side of the plane (clipped by the plane). However,
this is inefficient for evaluating interior points on many slices swept
through our 3D localization box. We improve efficiency by
performing a plane sweep and updating the stencil buffer
incrementally. For each slice, we only render the geometry between
the current slice and the previous slice.

This incremental update improves the running time dramatically since
on average the entire model is only drawn once! As opposed to the
single slice approach where the entire model to one side of the slice
had to be drawn for each successive slice. We can obtain even greater
performance by first sorting the geometric primitives along the Z-axis
by their minimum Z-values. A general sort would require O(n log n)
time complexity. We obtain expected O(n) complexity by performing
a bucket sort by using the slab positions as the buckets. With one pass
through the geometry, we can assign each primitive to a bucket by its
minimum Z-value. We maintain a list of currently active geometry for
each slab. For each subsequent slab we add geometry to the list from
the associated bucket. Geometry is removed from the list by checking
if the old primitives’ max Z-value is less than the current slab NearZ
(swept past the primitives). This also dramatically improves
performance with very little extra complexity or data. We avoid
having to search for geometry that intersects the current slab. In
addition, there is no need to add geometry to the buckets that lies
outside of the XY min/max box. In practice, very little geometry has
to be processed for the interior computation.

In order to find the intersection between two objects, we compute the
interior of both objects inside of the localized region one slice at a
time. The interior of both objects is encoded in a different bit of the
stencil buffer. The set of points with both bits set are intersection
points since they are interior to both objects. To actually extract these
points, we must read the stencil image and search for the pixels with
the appropriate value (a value of 3 from the 1st and 2nd least
significant bits being set). These points must then be transformed from
pixel-space into object-space.

5.1.2 Complexity and Error Analysis

Our new algorithm for intersection computation for 3D non-convex
objects is simpler as compared to the 2D intersection computation
algorithm presented in [Hoff01]. The major weakness of finding
overwritten pixels between two non-convex polygons, was that they
had to be triangulated in order to be rendered. This was the dominant
part of the intersection computation since it was worst case O(n log n)
rather than O(n). However, the expected running time of most
triangulation algorithms is usually close to linear. In 3D, we only
require the O(n) complexity where n is the number of primitives. The
actual running time varies most dramatically with the ratio of the size
of the localized region over the error tolerance, and is largely
independent of the geometric complexity. More complex forms of
contact do not result in increased running times unless the size of the
localized region is increased dramatically or the error tolerance is
reduced. These cases are difficult to analyze since they vary
dramatically with the object configurations. More sophisticated
geometric localization will reduce performance variations.

The complexity of rendering objects grows linearly with respect to the
number of primitives for a fixed pixel resolution. Computing
intersections geometrically between two polygon boundaries is worst
case O(n2) since all primitives could intersect each other. The
complexity of our algorithm is O(n) where n is the number of
primitives. The hierarchical geometric localization step is also O(n)

since the maximum depth of the tree is held constant. This tree depth
balances the load between the CPU and graphics subsystems.

Similarly to the 2D case, the error in the interior and intersection
computation is related to the pixel error in scan-conversion. The actual
interior regions will never be off by more than half of the length of the
diagonal of a pixel’s rectangular cell (the error tolerance). The error
tolerance has a dramatic effect on the number of pixels that have to be
processed. When reduced error tolerances are required, better
geometric object-space localization must be employed to reduce the
load on the graphics subsystem. Furthermore, we can also balance the
loads between geometry and fill stages of the graphics pipeline by
trading off error in the pixel resolution and the distance mesh
granularity.

Incorrect intersection parity resulting from pixel sample points lying
exactly on tangent points to the object surface are avoided through
correct minimum-based triangle rasterization as described in
[Rossignac92]: either the crossing will be counted twice or not at all.

5.1.3 Multiple Objects and Self-Collisions

We can modify the intersection routine to handle self-collisions and
multiple objects with very little modification to the previous
algorithm. The modification adds the complexity of having to
distinguish front and back faces for polygons in each slab for a
parallel projection and has the slight restriction of only handling the
intersection of at most 255 simultaneous volumes (limit of 8-bit
stencil buffer).

Instead of finding the interior of both objects separately and then
finding their common intersection, we can simply finding the
intersection directly using the geometry from both objects
simultaneously using the classic parity test used in the shadow volume
algorithm. Since we want to know if a point is inside two volumes
simultaneously, a ray emanating from a query point must have exited
at least two more volumes than it has entered.

Instead of simply flipping a bit each time a boundary is crossed (front
or back facing), starting with a stencil counter initialized to zero, we
increment the counter each time a volume is exited (a back face is
rendered) and decrement the counter whenever a volume is entered
(front face is rendered). The counter will indicate the number of
objects containing the point. We are interested in the intersection
points, so the counter must at least be 2. We simply modify our
existing approach of rendering slabs to perform this count instead. We
must classify all object faces for each slab as front or back facing with
respect to a parallel projection. Since all object triangles are handled
together, we can handle more than 2 objects and we can also find self-
intersections of a single object. Stencil counts of 2 or greater indicates
a point that is in the intersection of at least one pair of objects or an
object with itself.

5.2 Distance Field Computation
We use the algorithm presented in [Hoff99] for constructing
generalized Voronoi diagrams using graphics hardware for 3D
polygonal objects. This approach computes an image-based
representation of the Voronoi diagram in both the color and the depth
buffers for one 2D slice of the 3D volume at a time. A pixel’s color
identifies the polygon feature (vertex or edge) that is closest to the
slice pixel’s sample points; its depth value corresponds to the distance
to the nearest feature. The depth buffer is an image-based
representation of the distance field of the object boundaries. The
distance field is computed by rendering 3D bounded-error polygonal
mesh approximations of a 2D planar slice of the distance function
where the depth of the rendered mesh at a particular pixel location
corresponds to the distance to the nearest geometric feature.

The goal in constructing a distance mesh is to find a piecewise linear
approximation across a 2D planar domain of a Voronoi site’s 3D

 Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration 5

scalar distance function. The distance to a site from a point (x,y,z) is
defined as D(x,y,z). The function we are interested in approximating is
for a 2D planar slice z=Zslice. So we wish approximate the 2D scalar
function D(x,y, Zslice), where Zslice is a constant for any particular slice,
such that the approximation D’ and actual distance function D never
differ by more than the user-specified distance error. In addition, the
domain across the slice is restricted to a 2D window and the range of
the function is restricted to z∈[0,MaxDist]. The shape of the distance
mesh for a 3D point is one sheet of a hyperboloid of two sheets; for a
line, an elliptical cone; and for a plane, another plane.

In [Hoff99], distance meshes were constructed using lookup tables.
We construct error-bounded polygonal mesh approximations of a 2D
planar slice of a primitives distance function at run-time with no
precomputation at faster rates than the algorithm based on lookup
tables. We solve for the mesh stepsizes needed to maintain the desired
error threshold while taking advantage of symmetry. We attempt to
actual obtain the desired error to make the meshes as coarse as
possible for rendering efficiency. In addition, we only construct
geometry that lies within the slice window.

For computing distance fields for proximity queries, we obtain higher
performance than the generalized Voronoi diagram computation
because of the localized regions. In the case of computing distance
fields for proximity queries, the localized regions always contain the
geometry that is in potential contact or that contains the closest
features. The farthest away points on two objects can be is in opposite
corners of the localized region box. So the maximum distance we need
to construct distance meshes for is half of the diagonal length of the
box. Reducing the maximum distance results in the greatest speedups
in Voronoi computation since it reduces geometry and fill by reducing
the overall extent of the distance meshes, and the smaller bound
allows the objects to be easily culled if they are too far from the
localized region thus avoiding distance mesh construction completely.
In addition, the distance mesh generation routines attempt to minimize
the number of primitives drawn by constructing a mesh that is as
coarse as possible while staying within the specified error bound (the
error bound is tight, this deviation can actually be measured for
various places in the mesh approximation) and by only generating
primitives that are inside the localized region bounding box. In
addition, in many proximity queries we can further reduce the
maximum distance needed when we only want intersection or closest
points near the boundaries of the object.

5.3 Gradient of the Distance Field
We compute the gradient of the distance field at pixel locations by
using central differences in all three principal axis directions. In
practice, this simple approach gives reasonable results even with the
distance error and lack of C1 or higher continuity in the polygonal
distance mesh approximations used to compute the distance field.
Gradients are computed in software for selected points after reading
back the distance values. If the entire gradient field is desired, we
could accelerate the computation using multi-pass rendering or pixel
shading operations.

The most difficult problem in computing the gradient is in handling
discontinuities and boundaries in the distance field. There are three
types of discontinuities that occur: across Voronoi boundaries, across
Voronoi sites, and at the boundaries of the grid. In each case, the
support of the finite differencing “kernel” has to cross a discontinuity
and gives an incorrect gradient. A more robust method is shown in the
fast marching methods in [Sethian96]. He solves for a distance value
at an unknown point using an implicit method based on the fact that at
least one adjacent distance value must be known and does not cross a
discontinuity, and that for the nearest Euclidean distance metric the
magnitude of the gradient must be 1 everywhere (except at the
discontinuities). We use the same method by just using the one-sided
difference in each direction that will result in a gradient whose

magnitude is 1 (choose the adjacent value in each direction that has
the maximum difference). Adjacent distance values that cross a
discontinuity will not be chosen. An alternative, but slightly more
complex, strategy is to compute the gradients of the continuous
distance meshes directly.

By directly encoding gradients at distance mesh vertices, we can use
the linear interpolation of polygon rasterization to compute gradients
at all pixels. Since we would be linearly interpolating a gradient, this
gives us a higher order interpolation than central differencing of
adjacent distance values. This is comparable to the difference between
Gouraud and Phong interpolation (the first linearly interpolates color
values across a polygon, the second linearly interpolates the surface
normal for per-pixel lighting calculations). In addition, the gradient is
much simpler if computed only for a single site at a time during
distance mesh construction. We need only provide the direction to the
nearest point on the site at each distance mesh vertex. The main
difficulty with this approach is in the encoding of the gradient for
rapid computation by graphics hardware.

This approach as some difficulties due to limitations of graphics
hardware framebuffer precision. There are a number of ways we can
interpolate the gradient information. The simplest is to encode the
signed normalized components into the 8-bit RGB color values at each
vertex (using hardware scale and bias operations for sign). The linear
interpolation would give the correct results to 8-bits of precision. This
approach introduces quantization error when encoding and additional
error during interpolation. Using 3D texture coordinates, high
precision encoding and interpolation is obtained. However, the
resulting per-pixel texture coordinates are still quantized to low
precision RGB values in the framebuffer. The texture-mapping
function would simply be the identity mapping. We are interpolating
(s,t,r) gradient values and we want those values directly at each pixel.
The graphics hardware does not allow higher precision intermediate
results for multi-pass operations. However, the texture-mapping
method has the advantage of only introducing significant error at the
final stage; encoding and interpolation are done at floating point
precision. Also, the signs will be correctly handled without any
additional scaling or biasing. However, we also have no simple way of
performing the identity map. We must use a 1D texture that maps [-
1,1] to [0,255], but this can only be applied to one texture component
at a time. This would require three passes in order to transform (s,t,r)
into RGB values. A less efficient approach would involve the use of a
3D texture map. Current pixel-level programmable graphics hardware
may provide a simpler and more efficient way to handle this mapping.

5.4 Other Proximity Queries
We use the basic operations of computing interior points,
intersections, the distance field, and the gradient of the distance field
to perform the other proximity queries mentioned in section 1.

Penetration Depth and Direction: For a point on object A that is
penetrating object B, we define the penetration depth and direction for
the point as the distance and direction to the nearest feature on B. This
information is provided directly from the distance field and its
gradient computed at the penetrating point. Penetrating points are
found using the intersection operation. Intersection points are
associated with each object based on the Voronoi diagram’s color
buffer that indicates the closest object to each point. Contact points
and Normals are computed in the same way. Approximate contact
points result from the objects slightly penetrating each other.

Closest Point: We find the point on object A that is closest to object B
by first geometrically localizing potential closest feature regions (one
bounding box on each object) using some hierarchical approach. We
then compute the distance field of object B and the interior points of A
in A’s localized region (gives us minimum distance to B for all points
in A in A’s localized region). We then search these points to find the
one with the smallest distance value. This point will be the point on A

6 Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration

that is closest to B. This process has to be repeated for B with respect
to A. This requires two passes, but the interior points and the distance
field needs to only be computed once for each object.

Separation Distance and Direction: We find the minimum
separation distance and direction between two objects A and B by first
computing the closest point on A to B and vice versa. Ideally, we find
the closest point on B to A from the distance value and gradient at the
closest point on A to B, but the amplification of errors over the greater
distance may cause problems. The distance between these two closest
points is the separation distance and the line segment between them
gives the separation direction.

6 Performance
We tested the system performance in both rigid and deformable body
dynamic simulations on a several different hardware configurations.
In the rigid body cases, we measured the performance of the system in
computing proximity query information needed for computing a
penalty-based collision response. In these cases, only shallow
penetration is allowed since the objects bounce off of each other. For
the deformable cases, we perform only the proximity queries without
collision response to show the worst case of computing proximity
information for many deep simultaneous contact scenarios with
dynamically deforming geometry. We tried to choose three hardware
configurations that would reflect variations in balance between CPU
and graphics computational power:

(1) Pentium-4 1.8Ghz with GeForce3 Ti500 graphics: fast CPU and
fast graphics

(2) 1 graphics pipe and 1 300Mhz MIPS R12000 processor of an
SGI Reality Monster with InfiniteReality2 graphics: slower CPU
and fast graphics

(3) PentiumIII-750Mhz laptop with ATI Rage Pro LT: fast CPU and
slow graphics.

Because of the ability to balance the load between the CPU and
graphics subsystems and between stages of the graphics pipeline, we
are able to achieve interactive performance on all configurations. In
most cases, we only needed very simple one-level geometric
localization (intersection of top-level axis-aligned bounding boxes).
Most of the balancing was between stages of the graphics pipeline
(much of the geometry stage on older graphics systems was performed
on the CPU: before hardware T&L). We also show the effects of the
varying the distance threshold on system performance.

For performance evaluation, we implemented a rigid body simulator
with collision response and a variety of deformable simulations
without collision responses to allow more complex contact scenarios.
The test scenarios vary from simple convex objects composed of
around 2 thousand triangles with simple contact regions to non-
convex objects with nearly 10,000 triangles with multiple complex
overlapping and interlocking contact regions. The average query times
are shown in Table 1. It is important to note that the query time is not
growing because of the increase in geometric complexity, but rather
because our more complex models are in more complex contact
configurations.

The performance of our image-space query system depends more on
the contact configuration than on the complexity of the objects. The
distance error tolerance determines the point sample density across the
contact volume. The density and the volume of the localized regions
and the contact regions determine the number of pixels that have to be
processed. If an insufficient level of geometric localization is used, the
number of pixels to process may increase dramatically. The user must
decide the appropriate amount of localization to properly balance the
CPU/graphics load. In addition, the performance can be varied
dramatically by the user-specified distance error tolerance. In Table 2,
we show the effects on performance with a varying error tolerance.

Average Total Per-frame Proximity Query Times
Demo #Tris Isect Pts GeForce3 IR2 Rage Pro LT

Cylinders 2000 513 12ms 61ms 45ms
Tori 5000 1412 71 262 257

Heart 8000 317 149 329 434
Rigid 15000 2537 313 1001 966

Table 1: Performance timings for dynamics simulations. The number of triangles, average
number of intersection points, and average time to run proximity queries per frame is
reported for error tolerance d (see Table2). Timing data was gather from three machines, a
Pentium4 1.8GHz desktop with a 64Mb GeForce3, a SGI 300MHz R12000 with
InfiniteReality2 graphics, and a Pentium-III 750Mhz laptop with ATI Rage Pro LT graphics.

Effects of Error Tolerance on Performance
Error Isect Pts/Frame GeForce3 IR2 Rage Pro LT
d/4 89605 548ms 1701ms 2846ms
d/2 11238 169 578 689
d 1413 71 262 257
2d 177 32 189 103
4d 22 15 56 40

Table 2: The effect on performance when changing the distance error tolerance d. The
average number of intersection points per frame is also reported. We used proximity
queries on the deformable tori demo. The error determines the number of pixels used in
the image-based operations. Systems with low graphics performance are more directly
affected by the choice of d; however, as the error is increased there is less dependence on
graphics performance and the faster laptop CPU overtakes the InfiniteReality2 system.

Although we focused most of our efforts on handling deformable body
proximity queries, our system is also applicable to rigid body queries.
We use a penalty-based collision response that acts on individual point
samples that approximate our object. These point samples arise from
our image-space proximity queries. Particles are allowed to penetrate
objects in penalty-based collision response computation. When a
penetration is detected, a spring based restoring force, whose
magnitude is proportional to penetration depth, is then applied to the
particle until it has separated from the object. The measure of
penetration is notoriously expensive to compute and limits the use of
penalty-based techniques to mostly models decomposable into convex
primitives. The generality and computational efficiency provided by
our proximity query algorithms alleviates this problem.

7 Conclusion and Future Work
We have presented a hybrid geometry- and image-based algorithm for
computing geometric proximity queries between two non-convex
closed 3D polygonal objects using graphics hardware. This approach
has a number of advantages over previous approaches. The unified
framework allows us to compute all the queries, including penetration
depth and direction and contact normals. Furthermore, it involves no
precomputation and handles non-convex objects; as a result, it is also
applicable to dynamic or deformable geometric primitives. In practice,
we have found the algorithm to be simple to implement (as compared
to similarly robust geometric algorithms), quite robust, fast
(considering the complexity of the queries), and very flexible. We
have developed an interactive system that shows proximity queries
computed between 3D dynamic deformable objects to illustrate the
effectiveness of our approach.

References

[Baraff92] D. Baraff, Dynamic Simulation of Non-Penetrating Rigid Bodies. Ph.D.
Thesis, Dep of Comp. Sci., Cornell University, March 1992
[Cameron97] S. Cameron, Enhancing GJK: Computing Minimum and Penetration
Distance between Convex Polyhedra. International Conference on Robotics and
Automation, 3112-3117, 1997
[Crow77] F. Crow, Shadow Algorithms for Computer Graphics. SIGGRAPH 77.
[Dobkin93] D. Dobkin, J. Hershberger, D. Kirkpatrick, S. Suri, Computing the
Intersection Depth of Polyhedra. Algorithmica, 9(6), 518-533, 1993
[Ehmann01] S. Ehmann and M. Lin. Accurate and Fast Proximity Queries between
Polyhedra Using Surface Decomposition. Eurographics 2001

 Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration 7

[Fisher01] S. Fisher and M. Lin. Fast Penetration Depth Estimation for Elastic
Bodies Using Deformed Distance Fields. Proc. Intl. Conf. on Intelligent Robots and
Systems, 2001
[Frisken00] S. Frisken, R. N. Perry, A. P. Rockwood, T. R. Jones, Adaptively
Sampled Distance Fields: A General Representation of Shapes for Computer
Graphics. SIGGRAPH00, 249-254, July 2000
[Gilbert88] E. G. Gilbert, D. W. Johnson, S.S. Keerthi. A Fast Procedure for
Computing the Distance Between Objects in Three-Dimensional Space. IEEE J.
Robotics and Automation, RA(4): 193-203, 1988
[Goldfeather89] J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs. Near Real-time
CSG Rendering Using Tree Normalization and Geometric Pruning. IEEE Computer
Graphics and Applications, 9(3):20-28, May 1989
[Gottschalk96] S. Gottschalk, M. C. Lin, D. Manocha, OBB-Tree: A Hierarchical
Structure for Rapid Interference Detection. SIGGRAPH 96, 171-180, 1996
[Hoff99] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast Computation
of Generalized Voronoi Diagrams Using Graphics Hardware. SIGGRAPH 99, 277-
285, 1999
[Hoff01] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and Simple 2D
Geometry Proximity Queries Using Graphics Hardware. ACM Symposium on
Interactive 3D Graphics, 2001
[Hubbard93] P. M. Hubbard, Interactive Collision Detection. IEEE Symposium on
Research Frontiers in Virtual Reality. 24-31, 1993
[Kaul92] A. Kaul and J. Rossignac, Solid-interpolating Deformations: Construction
and Animation of PIPs, Computer and Graphics, vol 16, 107-116, 1992
[Kimmel98] R. Kimmel, N. Kiryati, A. Bruckstein, Multi-Valued Distance Maps for
Motion Planning on Surfaces with Moving Obstacles. IEEE Transactions on Robotics
and Automation, vol 14: 427-438, 1998
[Klosowski98] J. Klosowski, M. Held, J. Mitchell, K. Zikan, H. Sowizral. Efficient
Collision Detection Using Bounding Volume Hierarchies of k-DOPs. IEEE Trans.
Vis. Comp. Graph, 4(1):21-36, 1998
[Johnson98] D. Johnson, E. Cohen, A Framework for Efficient Minimum Distance
Computation, IEEE Conf. On Robotics and Animation, 3678-3683, 1998
[Lengyel90] J. Lengyel, M. Reichert, B.R. Donald, and D.P. Greenberg. Real-time
Robot Motion Planning Using Rasterizing Computer Graphics Hardware. Computer
Graphics (SIGGRAPH 90 Proc.), vol. 24, pgs 327-335, Aug 1990
[Lin91] M. Lin, J. Canny. Efficient Algorithms for Incremental Distance
Computation. IEEE Transactions on Robotics and Automation, 1991
[Mirtich96] B. Mirtich, Impulse-Based Dynamic Simulation of Rigid Body Systems.
Ph.D. Thesis, University of California, Berkeley, Dec 1996
[Mirtich98] B. Mirtich, V-Clip: Fast and Robust Polyhedral Collision Detection.
ACM Trans. on Graph, 17(3):177-208, 1998
[Pisula00] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized Path Planning
for a Rigid Body Based on Hardware Accelerated Voronoi Sampling. Proc. of
Workshop on Algorithmic Foundations of Robotics, 2000
[Quinlan94] S. Quinlan, Efficient Distance Computation between Non-Convex
Objects. International Conf. on Robotics and Automation, 3324-3329, 1994
[Rossignac92] J. Rossignac, A. Megahed, and B. Schneider. Interactive Inspection of
Solids: Cross-sections and Interferences. SIGGRAPH 92, 26, 353-360, July 1992
[Sethian96] J. Sethian, Level Set Methods, Cambridge University Press, 1996
[Snyder93] J. Snyder, A. Woodbury, K. Fleischer, B. Currin, A. Barr, Interval
Methods for Multi-Point Collisions Between Time Dependent Curved Surfaces. ACM
Computer Graphics, 321-334, 1993

Plate 1 hybrid proximity query pipeline: Given two closed polygonal objects, a coarse object-space geometric localization step is performed to find an
axis-aligned bounding box that contains a potential interaction (2). Inside the localized region, the lower-level image-space queries are performed. First
the interior of each object is indentified using an incremental stencil parity test for a series of 2D slices across the volume (2). The set of point that are
determined to lie in the interior of both objects form the intersection points between the objects (3). Then, the Voronoi diagram is computed inside a
tighter region around the intersection points at the same resolution as the intersection resolution. The Voronoi diagram serves two purposes: associates
intersection points with their closest object boundaries, and provides the distance field. The distance value at an intersection point gives the penetration
depth, and the gradient gives the penetration direction.

Plate 2 real-time dynamic deformable proximity queries: The same proximity query pipeline can be applied to dynamic deformable models where
every vertex is assumed to change for every frame. The complex contacts between non-convex objects can result in disconnected intersection regions.
Each cylinder model is composed of 2000 triangles and the average query time is 12ms for an average of 513 intersection points per query. The tori are
composed of 5000 triangles and the query time is 71ms for 1412 intersection points. Each simulation performed at interactive rates on a Pentium4
1.8GHz desktop with a 64Mb GeForce3.

Plate 3 proximity queries on body heartbeat simulation: The proximity queries are used for
path verification of the organs during a precomputed breathing simulation. Here we can see
that the two ventricles are actually intersecting. The heart is composed of 8000 triangles and
the average query time is 149ms for an average of 317 intersection points. This simulation
performed at interactive rates on a Pentium4 1.8GHz desktop with a 64Mb GeForce3.

Plate 4 multiple complex contact scenario in an
interactive rigid body simulation: Collision
responses are computed using a penalty-based
method that requires penetration depth computation.
Each ring is composed of 2500 triangles, average
query time is 313ms for 2537 intersection points.

	Introduction
	Related Work
	2.1 Voronoi and Distance field Computation
	2.2 2D Proximity Queries using Graphics HW

	Overview of Our Approach
	Object-space Geometric Localization
	Image-space Proximity Queries
	Intersections
	5.1.1 Incremental Update and Bucket Sorting
	5.1.2 Complexity and Error Analysis
	5.1.3 Multiple Objects and Self-Collisions

	Distance Field Computation
	Gradient of the Distance Field
	Other Proximity Queries

	Performance
	Conclusion and Future Work

