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Abstract 
We present an approach for computing generalized proximity information between arbitrary polygonal models using graphics 
hardware acceleration. Our algorithm combines object-space localization, multi-pass rendering techniques, and accelerated distance 
field computation to perform complex proximity queries at interactive rates. It is applicable to any closed, possibly non-convex, 
polygonal object and requires no precomputation, making it suitable for both rigid and dynamically deformable geometry of relatively 
high complexity. The proximity queries include, not only collision detection, but also the computation of intersections, minimum 
separation distance, closest points, penetration depth and direction, and contact points and normals. The load is balanced between 
CPU and graphics subsystems through a hybrid geometry and image-based approach. Geometric object-space techniques coarsely 
localize potential interactions between two objects, and image-space techniques accelerated with graphics hardware provide the low-
level proximity information. We have implemented our system using the OpenGL graphics library and have tested it on various 
hardware configurations with a wide range of object complexities and contact scenarios. In all cases, interactive frame rates are 
achieved. In addition, our algorithm’s performance is heavily based on the graphics hardware computational power growth curve 
which has exceeded the expectations of Moore’s Law for general CPU power growth. 

  

1. Introduction 
Many applications of computer graphics or computer simulated 
environments require spatial or proximity relationships between 
objects. In particular, dynamic simulation, haptic rendering, surgical 
simulation, robot motion planning, virtual prototyping, and computer 
games often need to perform different proximity queries at interactive 
rates. The set of queries include collision detection, intersection, 
closest point computation, minimum separation distance, penetration 
depth, and contact points and normals. Algorithms to perform 
different queries have been well studied in computer graphics, virtual 
environments, robotics and computational geometry. Most of the 
current approaches involve considerable pre-processing and therefore 
are not fast enough for deformable models. Furthermore, no good 
algorithms are known for penetration depth computation between 
general, non-convex models. 

We present a novel approach to perform all the proximity queries 
between rigid and deformable models using graphics hardware 
acceleration. Our algorithm localizes potential interactions using 
object-space techniques, point-samples the region, and then uses 
polygon rasterization hardware to compute object intersections, 
closest points, and the distance field and its gradients.  

The main features of our approach include a unified framework for all 
proximity queries, applicability to non-convex polygonal models, 
computational efficiency allowing interactive queries on current PCs, 
robustness in terms of not dealing with any special-cases or 
degeneracies, and portability across various CPU/graphics 
combinations. A user-specified error threshold for pixel point 
sampling density and distance approximation governs the accuracy of 
the overall approach. Some of the novel features of our approach 
include:  

• Improved and efficient construction of distance meshes used to 
compute 3D Voronoi diagrams accelerated with graphics hardware. 

• Site culling algorithms and distance mesh culling for increased 
performance of Voronoi computation. 

• Improved graphics hardware acceleration of computing the 
intersection between two, possibly non-convex, polygonal objects, 
over an entire volume. 

• Improved algorithm for computing 3D image-space intersections 
that handles both inter-object and self-collisions. 

• Computation of the gradients of the distance field using graphics 
hardware. 

 
We have implemented our algorithm on various hardware 
configurations, and demonstrate its performance to compute different 
queries between rigid and dynamically deforming polygonal objects. 
Our approach is well suited for computing proximity query 
information needed for collision responses between dynamic 
deformable models. The use of graphics hardware allows us to 
perform different queries at interactive rates on complex deformable 
models. Moreover, it is relatively simple to implement all these 
queries in a robust manner. Over the last decade, the graphics 
processors (GPUs) processing power has been progressing at a rate 
faster than the CPUs and this will result in handling even more 
complex scenarios at interactive rates. 

2. Related Work 
Algorithms for computing collisions, intersections, and minimum 
separation distances have been extensively researched. Many are 
restricted to convex objects [Cameron 97, Ehmann01, Gilbert88, 
Lin91, Mirtich98] or are based on hierarchical bounding-volume or 
spatial data structures that require considerable precomputation and 
are best suited for rigid geometry [Hubbard93, Quinlan94, 
Gottschalk96, Johnson98, Klosowski98]. Some algorithms handle 
dynamically deforming geometry by assuming that motion is 
expressed as a closed form function of time [Snyder93] or by using 
very specialized algorithms [Baraff92]. In our approach, we 
emphasize the handling of non-convex, dynamically deformable 
objects with no precomputation or knowledge of object motions. In 
addition, we obtain computational complexity that grows linearly with 
geometric complexity for a fixed error tolerance and contact scenario. 
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As compared to collision detection and separation distance 
computation, there is relatively little work on penetration depth 
computation. Penetration depth is typically defined as the minimum 
translational distance needed to separate two objects. We define it 
with respect to a point as the minimum translational distance and 
direction needed to separate a penetrating point from an object’s 
interior. Dobkin et al. have presented an algorithm to compute the 
intersection depth of convex polytopes, though no practical 
implementation is known [Dobkin93]. Cameron has presented a 
practical algorithm that computes an approximate depth for convex 
polytopes [Cameron97]. No practical algorithms are known for 
general, non-convex polyhedra. 

Our algorithm relies on the computation of discretized distance fields 
and graphics hardware-accelerated geometric computation. Distance 
fields - scalar fields that specify minimum distance to a shape for all 
points in the field - have been used for many applications in graphics, 
robotics and manufacturing [Frisken00, Fisher01]. Common 
algorithms for distance field computation are based on level sets 
[Sethian96] or adaptive techniques [Frisken00]. However, they either 
require static geometry, extensive preprocessing, or lack tight error 
bounds. Graphics hardware has been used to accelerate a number of 
geometric computations, such as visualization of constructive solid 
geometry models [Goldfeather89], cross-sections and interferences 
[Rossignac92], and computation of the Minkowki sum [Kaul92]. 
However, these only compute intersections, not distance-related 
queries. Algorithms also exist for motion planning using graphics 
hardware acceleration and distance fields [Kimmel98, Lengyel90, 
Pisula00]. More recently, an algorithm has been proposed to compute 
generalized Voronoi diagrams and distance fields using graphics 
hardware [Hoff99]. Its application to motion planning was presented 
in [Pisula00]. Also, proximity queries accelerated using graphics 
hardware was presented in [Hoff01], but it was restricted to 2D and its 
extension to 3D was not obvious. 

2.1 Voronoi and Distance field Computation 
In [Hoff99], they present an algorithm for computing approximate 2D 
and 3D generalized Voronoi diagrams for polygonal objects with a 
variety of distance metrics. The representation is in the form of a 
discretized regular grid of sample points (images) across a 2D slice. A 
3D Voronoi diagram is composed of a sequence of these slices across 
the volume to form a regular 3D grid. At each grid point, the ID of the 
nearest site and its associated distance is stored. They accelerate a 
brute-force algorithm using graphics hardware.  

Instead of relying on a distance evaluation between a point and a 
Voronoi site, a polygonal distance mesh is constructed so that when 
rendered it computes the correct distance value as the Z-coordinate. If 
these distance meshes are rendered for each site with Z-buffer 
visibility enabled, the correct comparisons and updates will also be 
performed. This reduces the problem to finding a polygonal mesh 
approximation of a 2D slice of the distance function. In 3D, the 
distance mesh must approximate a 2D slice of the 3D domain. 

Their 3D implementation simply used a coarse regular grid with direct 
distance evaluations at each grid point. This often required over-
meshing, inefficient direct distance evaluations at grid points, and did 
not take advantage of the inherent symmetry in the functions being 
approximated. In addition, this approximation did not provide a tight 
bound on the approximation and the computation times were on the 
order of minutes to hours for high resolution Voronoi diagrams of 
complex models. 

We extend the 3D distance mesh ideas and formulate a very fast and 
efficient bounded error approximation without requiring any lookup 
tables or complex data structures. In addition, we present methods for 
greatly accelerating the distance evaluations through culling 
techniques. 

2.2 2D Proximity Queries using Graphics HW 
In [Hoff01], they presented an approach using the graphics hardware 
based Voronoi computation for performing more general proximity 
queries, such as those needed in computing collision responses in a 
dynamics simulation. This paper focused on the interactions between 
2D, possibly non-convex, polygonal objects only, but illustrated the 
potential for having a unified framework for a wide range of 
proximity queries. Many of the queries supported are particularly 
difficult for object-space algorithms, such as computing intersections, 
penetrating points, and penetration depths and directions. They used 
image-space techniques for performing these queries that were 
accelerated using graphics hardware. The core operations were based 
on queries into the Voronoi diagram. They presented a pipeline that 
allowed load balancing between CPU and graphics subsystems by first 
incorporating an object-space geometric localization phase to restrict 
the area over which the image-space phase must be performed. 

Through improvements in the Voronoi diagram computation, we have 
extended this work into 3D. Many additional optimizations were 
necessary to make this run well in practice, including: faster and 
efficient distance meshing with bounded error, conservative Voronoi 
site culling, and making the queries symmetric (query A w.r.t. B is the 
same as B w.r.t. A). In addition, we constructed a specialized 
algorithm for computing 3D intersections efficiently. Previously in 
[Hoff01] for 2D, they relied on pixel overwrite to find intersection 
points. For 3D, we used a parity based strategy similar to operations 
used in graphics hardware-accelerated visualization of CSG 
operations and shadow volumes. 

3. Overview of Our Approach 
Given a collection of closed 3D polygonal objects, we perform coarse 
geometric localization to find rectangular regions of space (axis-
aligned bounding boxes) that contain either potential intersections or 
closest feature pairs between objects. We uniformly point-sample 
these regions and use polygon rasterization hardware to compute 
object intersections, closest points, and the distance field. The distance 
field and its gradient vector field provide the distance and direction to 
the nearest feature for each point in the localized region, which gives 
the contact normals, minimum separation distances, or penetration 
depths. Our core algorithm computes the proximity information 
between two 3D, possibly non-convex, polygonal objects. Higher-
order curved surfaces are tessellated into polygons with bounded 
distance deviation error. In our hybrid approach, there are two top-
level operations: 

(1) Geometric object-space operations to coarsely localize potential 
intersection regions or closest features 

(2) Image-space operations using graphics hardware to compute the 
proximity information in the localized regions 

Most of our improvements center around Voronoi and distance field 
computation since it is by far the most costly operation and is the most 
demanding of the graphics hardware. Load balancing between CPU 
and graphics subsystems is achieved by varying the coarseness of the 
object-space localization and by using object-space culling strategies. 
Tighter localized regions result in fewer pixels and a smaller bound on 
the maximum distance needed for Voronoi computation, thus reducing 
the fill and geometry loads on the graphics pipeline. We can also 
balance the load between these two main stages of the graphics 
pipeline by shifting the distance error tolerance in the Voronoi 
computation between fill and geometry: increasing the pixel resolution 
decreases the distance mesh resolution and vice versa. The main parts 
of the proximity query pipeline are shown in the following figure: 
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Figure 1: The proximity query pipeline is composed of two main stages: geometric 
localization and image-space queries. The most complex queries are performed by 
graphics hardware. Each stage can be varied to balance the load between CPU and 
graphics subsystems. 

4. Object-space Geometric Localization 
The image-based queries operate on a uniform 3D grid of sample 
points in regions of space containing potential interactions. The 
graphics hardware pixel framebuffer is used as a 2D slice of the grid 
and the proximity queries become pixel operations, therefore the 
performance varies dramatically with the pixel resolution. To avoid 
excessive load, a geometric localization step is used to localize 
regions of potential interaction or as a trivial rejection stage. This 
hybrid geometry/image-based approach helps balance the load 
between the CPU and graphics subsystems, giving us portability 
between different workstations with varying performance 
characteristics. More sophisticated geometric techniques, to tightly 
localize potential intersections or closest feature pairs, dramatically 
reduce the graphics pipeline overhead, but increases the CPU usage 
and the complexity of the algorithm. We use coarse fixed-height 
bounding-volume hierarchies to achieve this balance between speed 
and complexity, and between CPU and graphics usage. 

There are many general and efficient algorithms available for 
localizing geometry based on bounding-volume hierarchies 
[Gottschalk96, Hubbard93, Johnson98, Quinlan94]. However, for 
exact collision detection these algorithms typically perform well only 
on static geometry where the hierarchy can be precomputed. In order 
to handle dynamic deformable geometry with no precomputation, we 
use coarse levels for efficient trivial rejection and obtain reasonable 
geometric localization. In addition, we perform lazy evaluation of 
relevant portions of the hierarchies while performing the collision or 
distance query. A subtree rooted at a particular node is only computed 
if its children need to be visited during the query traversal. The trees 
are destroyed after every proximity query, and no actual tree data 
structures are required since the child nodes are recursively passed to 
the query routine. A maximum height of each object tree is used to 
balance the CPU and graphics load. Similar algorithms can be 
constructed using spatial partitioning rather than bounding-volume 
hierarchies. Since the resulting localized region needs to be 
rectangular (an axis-aligned cube) to allow simple use of the graphics 
hardware, we use a dynamically constructed AABB-tree. With a fixed 
number (depth of the tree) of linear passes over the geometry we 
obtain reasonable localization. 

The typical proximity query is between two objects at a time. 
However, it is possible to perform many simultaneous queries for all 
objects in an N-body simulation. We could perform the proximity 
queries for all objects with one image-space query by using a 
localized region that encloses the entire scene. This may be more 
efficient in cases when the objects are densely packed with many 
complex contacts throughout the space containing the objects. For 
example, in a dense rigid body simulation where many objects are 
interacting simultaneously (e.g. an asteroid field), a single image-
space query over the entire space may be more appropriate (localized 
region is the world bounding box). In addition, as the computational 
power of graphics systems continues to overtake the general CPU 
power, coarser and simpler localization will be favored. 

The geometric localization step may often result in multiple 
disconnected regions on each object. In these cases, the proximity 
query must be repeated for each localized region. Geometric 
localization for intersecting and nearest features can be found by using 
existing bounding-volume or spatial partitioning approaches that act 

on object boundaries, but finding localized regions around volume 
intersections requires a specialized algorithm. At each step of 
refinement, the parent bounding box must fully contain the volume 
intersection. This can be accomplished by first starting with the 
intersection of the top-level object bounding boxes. This intersection 
box will surely contain the intersection volume. Now we can refine 
this localization by computing the bounding box of the portion of each 
object that lies in the current box. We then repeat the process on the 
intersection of these two boxes which is also guaranteed to contain the 
intersection volume. 

5. Image-space Proximity Queries 
The proximity queries are simplified using uniform point sampling 
inside an axis-aligned bounding box (localized region) and accelerated 
with graphics hardware. This image-space approach helps decouple 
the objects’ geometric complexity from the computational complexity 
for a specified error tolerance. We point-sample the space containing 
the geometry within the localized regions with a uniform rectangular 
3D grid and perform the queries on this volumetric representation 
using graphics hardware acceleration. The image-based queries 
include computing intersections between objects, computing the 
distance field of an object boundary, and computing the gradient of 
the distance field. Variations of these basic operations are used to 
perform the remaining queries. The basic pipeline is shown in Figure 
2. 

The 3D image-space queries avoid excessive data handling when 
processing the entire volume of the localized region. Each query must 
be performed over the uniform 3D grid, one 2D slice at a time. The 
application query information is sent to the application as it is 
processed slice-by-slice to avoid processing and storing the entire 3D 
image. In addition, many of the queries have been made symmetric to 
avoid a second pass as needed in the previous work. 
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Figure 2: The most computationally intensive tasks are performed by the graphics 
hardware. These stages are also the most difficult for geometric object-space approaches. 
We accelerate simple brute-force image-space solutions using graphics hardware to 
obtain interactive performance on complex models with no precomputation 

5.1 Intersections 
We compute intersection points on a 2D slice by performing a parity 
test, as is often used in shadow volumes and CSG rendering, using 
graphics hardware stencil operations [Crow77, Rossignac92]. In order 
to find intersections, we must first be able to identify sample points 
that are inside the object. The set of sample points that are inside both 
objects form the intersection points between the objects. We then 
describe another generalized strategy that can handle intersections 
between multiple objects simultaneously along with the more complex 
self-intersections. 

For any closed object, we can determine if a point is inside the object 
by shooting a ray from the point in any direction and counting the 
number of times the object’s surface is crossed. If the count is even, 
the point is outside of the object; if odd, the point is inside. We can 
simultaneously determine which sample points on a 2D planar slice 
are interior points by projecting all of the geometry on one side of the 
plane onto the plane and counting the number of times pixels are 
overwritten. This computation is performed using the graphics 
hardware through an odd-even parity test for rendered geometry 
clipped by the plane and projected onto the plane. Each time a pixel is 
overwritten the parity bit is flipped. Pixels whose stencil bit is set to 1 
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represent points on the slice that are inside the object. Initially the 
stencil buffer is initialized to 0. 

5.1.1 Incremental Update and Bucket Sorting 

For a single slice, this computation requires rendering all of the 
geometry on one side of the plane (clipped by the plane). However, 
this is inefficient for evaluating interior points on many slices swept 
through our 3D localization box. We improve efficiency by 
performing a plane sweep and updating the stencil buffer 
incrementally. For each slice, we only render the geometry between 
the current slice and the previous slice. 

This incremental update improves the running time dramatically since 
on average the entire model is only drawn once! As opposed to the 
single slice approach where the entire model to one side of the slice 
had to be drawn for each successive slice. We can obtain even greater 
performance by first sorting the geometric primitives along the Z-axis 
by their minimum Z-values. A general sort would require O(n log n) 
time complexity. We obtain expected O(n) complexity by performing 
a bucket sort by using the slab positions as the buckets. With one pass 
through the geometry, we can assign each primitive to a bucket by its 
minimum Z-value. We maintain a list of currently active geometry for 
each slab. For each subsequent slab we add geometry to the list from 
the associated bucket. Geometry is removed from the list by checking 
if the old primitives’ max Z-value is less than the current slab NearZ 
(swept past the primitives). This also dramatically improves 
performance with very little extra complexity or data. We avoid 
having to search for geometry that intersects the current slab. In 
addition, there is no need to add geometry to the buckets that lies 
outside of the XY min/max box. In practice, very little geometry has 
to be processed for the interior computation. 

In order to find the intersection between two objects, we compute the 
interior of both objects inside of the localized region one slice at a 
time. The interior of both objects is encoded in a different bit of the 
stencil buffer. The set of points with both bits set are intersection 
points since they are interior to both objects. To actually extract these 
points, we must read the stencil image and search for the pixels with 
the appropriate value (a value of 3 from the 1st and 2nd least 
significant bits being set). These points must then be transformed from 
pixel-space into object-space. 

5.1.2 Complexity and Error Analysis 

Our new algorithm for intersection computation for 3D non-convex 
objects is simpler as compared to the 2D intersection computation 
algorithm presented in [Hoff01]. The major weakness of finding 
overwritten pixels between two non-convex polygons, was that they 
had to be triangulated in order to be rendered. This was the dominant 
part of the intersection computation since it was worst case O(n log n) 
rather than O(n). However, the expected running time of most 
triangulation algorithms is usually close to linear. In 3D, we only 
require the O(n) complexity where n is the number of primitives. The 
actual running time varies most dramatically with the ratio of the size 
of the localized region over the error tolerance, and is largely 
independent of the geometric complexity. More complex forms of 
contact do not result in increased running times unless the size of the 
localized region is increased dramatically or the error tolerance is 
reduced. These cases are difficult to analyze since they vary 
dramatically with the object configurations. More sophisticated 
geometric localization will reduce performance variations. 

The complexity of rendering objects grows linearly with respect to the 
number of primitives for a fixed pixel resolution. Computing 
intersections geometrically between two polygon boundaries is worst 
case O(n2) since all primitives could intersect each other. The 
complexity of our algorithm is O(n) where n is the number of 
primitives. The hierarchical geometric localization step is also O(n) 

since the maximum depth of the tree is held constant. This tree depth 
balances the load between the CPU and graphics subsystems. 

Similarly to the 2D case, the error in the interior and intersection 
computation is related to the pixel error in scan-conversion. The actual 
interior regions will never be off by more than half of the length of the 
diagonal of a pixel’s rectangular cell (the error tolerance). The error 
tolerance has a dramatic effect on the number of pixels that have to be 
processed. When reduced error tolerances are required, better 
geometric object-space localization must be employed to reduce the 
load on the graphics subsystem. Furthermore, we can also balance the 
loads between geometry and fill stages of the graphics pipeline by 
trading off error in the pixel resolution and the distance mesh 
granularity. 

Incorrect intersection parity resulting from pixel sample points lying 
exactly on tangent points to the object surface are avoided through 
correct minimum-based triangle rasterization as described in 
[Rossignac92]: either the crossing will be counted twice or not at all. 

5.1.3 Multiple Objects and Self-Collisions 

We can modify the intersection routine to handle self-collisions and 
multiple objects with very little modification to the previous 
algorithm. The modification adds the complexity of having to 
distinguish front and back faces for polygons in each slab for a 
parallel projection and has the slight restriction of only handling the 
intersection of at most 255 simultaneous volumes (limit of 8-bit 
stencil buffer). 

Instead of finding the interior of both objects separately and then 
finding their common intersection, we can simply finding the 
intersection directly using the geometry from both objects 
simultaneously using the classic parity test used in the shadow volume 
algorithm. Since we want to know if a point is inside two volumes 
simultaneously, a ray emanating from a query point must have exited 
at least two more volumes than it has entered. 

Instead of simply flipping a bit each time a boundary is crossed (front 
or back facing), starting with a stencil counter initialized to zero, we 
increment the counter each time a volume is exited (a back face is 
rendered) and decrement the counter whenever a volume is entered 
(front face is rendered). The counter will indicate the number of 
objects containing the point. We are interested in the intersection 
points, so the counter must at least be 2. We simply modify our 
existing approach of rendering slabs to perform this count instead. We 
must classify all object faces for each slab as front or back facing with 
respect to a parallel projection. Since all object triangles are handled 
together, we can handle more than 2 objects and we can also find self-
intersections of a single object. Stencil counts of 2 or greater indicates 
a point that is in the intersection of at least one pair of objects or an 
object with itself. 

5.2 Distance Field Computation 
We use the algorithm presented in [Hoff99] for constructing 
generalized Voronoi diagrams using graphics hardware for 3D 
polygonal objects. This approach computes an image-based 
representation of the Voronoi diagram in both the color and the depth 
buffers for one 2D slice of the 3D volume at a time. A pixel’s color 
identifies the polygon feature (vertex or edge) that is closest to the 
slice pixel’s sample points; its depth value corresponds to the distance 
to the nearest feature. The depth buffer is an image-based 
representation of the distance field of the object boundaries. The 
distance field is computed by rendering 3D bounded-error polygonal 
mesh approximations of a 2D planar slice of the distance function 
where the depth of the rendered mesh at a particular pixel location 
corresponds to the distance to the nearest geometric feature. 

The goal in constructing a distance mesh is to find a piecewise linear 
approximation across a 2D planar domain of a Voronoi site’s 3D 
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scalar distance function. The distance to a site from a point (x,y,z) is 
defined as D(x,y,z). The function we are interested in approximating is 
for a 2D planar slice z=Zslice. So we wish approximate the 2D scalar 
function D(x,y, Zslice), where Zslice is a constant for any particular slice, 
such that the approximation D’ and actual distance function D never 
differ by more than the user-specified distance error. In addition, the 
domain across the slice is restricted to a 2D window and the range of 
the function is restricted to z∈[0,MaxDist]. The shape of the distance 
mesh for a 3D point is one sheet of a hyperboloid of two sheets; for a 
line, an elliptical cone; and for a plane, another plane. 

In [Hoff99], distance meshes were constructed using lookup tables. 
We construct error-bounded polygonal mesh approximations of a 2D 
planar slice of a primitives distance function at run-time with no 
precomputation at faster rates than the algorithm based on lookup 
tables. We solve for the mesh stepsizes needed to maintain the desired 
error threshold while taking advantage of symmetry. We attempt to 
actual obtain the desired error to make the meshes as coarse as 
possible for rendering efficiency. In addition, we only construct 
geometry that lies within the slice window. 

For computing distance fields for proximity queries, we obtain higher 
performance than the generalized Voronoi diagram computation 
because of the localized regions. In the case of computing distance 
fields for proximity queries, the localized regions always contain the 
geometry that is in potential contact or that contains the closest 
features. The farthest away points on two objects can be is in opposite 
corners of the localized region box. So the maximum distance we need 
to construct distance meshes for is half of the diagonal length of the 
box. Reducing the maximum distance results in the greatest speedups 
in Voronoi computation since it reduces geometry and fill by reducing 
the overall extent of the distance meshes, and the smaller bound 
allows the objects to be easily culled if they are too far from the 
localized region thus avoiding distance mesh construction completely. 
In addition, the distance mesh generation routines attempt to minimize 
the number of primitives drawn by constructing a mesh that is as 
coarse as possible while staying within the specified error bound (the 
error bound is tight, this deviation can actually be measured for 
various places in the mesh approximation) and by only generating 
primitives that are inside the localized region bounding box. In 
addition, in many proximity queries we can further reduce the 
maximum distance needed when we only want intersection or closest 
points near the boundaries of the object. 

5.3 Gradient of the Distance Field 
We compute the gradient of the distance field at pixel locations by 
using central differences in all three principal axis directions. In 
practice, this simple approach gives reasonable results even with the 
distance error and lack of C1 or higher continuity in the polygonal 
distance mesh approximations used to compute the distance field. 
Gradients are computed in software for selected points after reading 
back the distance values. If the entire gradient field is desired, we 
could accelerate the computation using multi-pass rendering or pixel 
shading operations. 

The most difficult problem in computing the gradient is in handling 
discontinuities and boundaries in the distance field. There are three 
types of discontinuities that occur: across Voronoi boundaries, across 
Voronoi sites, and at the boundaries of the grid. In each case, the 
support of the finite differencing “kernel” has to cross a discontinuity 
and gives an incorrect gradient. A more robust method is shown in the 
fast marching methods in [Sethian96]. He solves for a distance value 
at an unknown point using an implicit method based on the fact that at 
least one adjacent distance value must be known and does not cross a 
discontinuity, and that for the nearest Euclidean distance metric the 
magnitude of the gradient must be 1 everywhere (except at the 
discontinuities). We use the same method by just using the one-sided 
difference in each direction that will result in a gradient whose 

magnitude is 1 (choose the adjacent value in each direction that has 
the maximum difference). Adjacent distance values that cross a 
discontinuity will not be chosen. An alternative, but slightly more 
complex, strategy is to compute the gradients of the continuous 
distance meshes directly. 

By directly encoding gradients at distance mesh vertices, we can use 
the linear interpolation of polygon rasterization to compute gradients 
at all pixels. Since we would be linearly interpolating a gradient, this 
gives us a higher order interpolation than central differencing of 
adjacent distance values. This is comparable to the difference between 
Gouraud and Phong interpolation (the first linearly interpolates color 
values across a polygon, the second linearly interpolates the surface 
normal for per-pixel lighting calculations). In addition, the gradient is 
much simpler if computed only for a single site at a time during 
distance mesh construction. We need only provide the direction to the 
nearest point on the site at each distance mesh vertex. The main 
difficulty with this approach is in the encoding of the gradient for 
rapid computation by graphics hardware. 

This approach as some difficulties due to limitations of graphics 
hardware framebuffer precision. There are a number of ways we can 
interpolate the gradient information. The simplest is to encode the 
signed normalized components into the 8-bit RGB color values at each 
vertex (using hardware scale and bias operations for sign). The linear 
interpolation would give the correct results to 8-bits of precision. This 
approach introduces quantization error when encoding and additional 
error during interpolation. Using 3D texture coordinates, high 
precision encoding and interpolation is obtained. However, the 
resulting per-pixel texture coordinates are still quantized to low 
precision RGB values in the framebuffer. The texture-mapping 
function would simply be the identity mapping. We are interpolating 
(s,t,r) gradient values and we want those values directly at each pixel. 
The graphics hardware does not allow higher precision intermediate 
results for multi-pass operations. However, the texture-mapping 
method has the advantage of only introducing significant error at the 
final stage; encoding and interpolation are done at floating point 
precision. Also, the signs will be correctly handled without any 
additional scaling or biasing. However, we also have no simple way of 
performing the identity map. We must use a 1D texture that maps [-
1,1] to [0,255], but this can only be applied to one texture component 
at a time. This would require three passes in order to transform (s,t,r) 
into RGB values. A less efficient approach would involve the use of a 
3D texture map. Current pixel-level programmable graphics hardware 
may provide a simpler and more efficient way to handle this mapping. 

5.4 Other Proximity Queries 
We use the basic operations of computing interior points, 
intersections, the distance field, and the gradient of the distance field 
to perform the other proximity queries mentioned in section 1. 

Penetration Depth and Direction: For a point on object A that is 
penetrating object B, we define the penetration depth and direction for 
the point as the distance and direction to the nearest feature on B. This 
information is provided directly from the distance field and its 
gradient computed at the penetrating point. Penetrating points are 
found using the intersection operation. Intersection points are 
associated with each object based on the Voronoi diagram’s color 
buffer that indicates the closest object to each point. Contact points 
and Normals are computed in the same way. Approximate contact 
points result from the objects slightly penetrating each other. 

Closest Point: We find the point on object A that is closest to object B 
by first geometrically localizing potential closest feature regions (one 
bounding box on each object) using some hierarchical approach. We 
then compute the distance field of object B and the interior points of A 
in A’s localized region (gives us minimum distance to B for all points 
in A in A’s localized region). We then search these points to find the 
one with the smallest distance value. This point will be the point on A 

 



6  Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration 

that is closest to B. This process has to be repeated for B with respect 
to A. This requires two passes, but the interior points and the distance 
field needs to only be computed once for each object. 

Separation Distance and Direction: We find the minimum 
separation distance and direction between two objects A and B by first 
computing the closest point on A to B and vice versa. Ideally, we find 
the closest point on B to A from the distance value and gradient at the 
closest point on A to B, but the amplification of errors over the greater 
distance may cause problems. The distance between these two closest 
points is the separation distance and the line segment between them 
gives the separation direction. 

6 Performance 
We tested the system performance in both rigid and deformable body 
dynamic simulations on a several different hardware configurations. 
In the rigid body cases, we measured the performance of the system in 
computing proximity query information needed for computing a 
penalty-based collision response. In these cases, only shallow 
penetration is allowed since the objects bounce off of each other. For 
the deformable cases, we perform only the proximity queries without 
collision response to show the worst case of computing proximity 
information for many deep simultaneous contact scenarios with 
dynamically deforming geometry. We tried to choose three hardware 
configurations that would reflect variations in balance between CPU 
and graphics computational power: 

(1) Pentium-4 1.8Ghz with GeForce3 Ti500 graphics: fast CPU and 
fast graphics 

(2) 1 graphics pipe and 1 300Mhz MIPS R12000 processor of an 
SGI Reality Monster with InfiniteReality2 graphics: slower CPU 
and fast graphics 

(3) PentiumIII-750Mhz laptop with ATI Rage Pro LT: fast CPU and 
slow graphics.  

Because of the ability to balance the load between the CPU and 
graphics subsystems and between stages of the graphics pipeline, we 
are able to achieve interactive performance on all configurations. In 
most cases, we only needed very simple one-level geometric 
localization (intersection of top-level axis-aligned bounding boxes). 
Most of the balancing was between stages of the graphics pipeline 
(much of the geometry stage on older graphics systems was performed 
on the CPU: before hardware T&L). We also show the effects of the 
varying the distance threshold on system performance. 

For performance evaluation, we implemented a rigid body simulator 
with collision response and a variety of deformable simulations 
without collision responses to allow more complex contact scenarios. 
The test scenarios vary from simple convex objects composed of 
around 2 thousand triangles with simple contact regions to non-
convex objects with nearly 10,000 triangles with multiple complex 
overlapping and interlocking contact regions. The average query times 
are shown in Table 1. It is important to note that the query time is not 
growing because of the increase in geometric complexity, but rather 
because our more complex models are in more complex contact 
configurations. 

The performance of our image-space query system depends more on 
the contact configuration than on the complexity of the objects. The 
distance error tolerance determines the point sample density across the 
contact volume. The density and the volume of the localized regions 
and the contact regions determine the number of pixels that have to be 
processed. If an insufficient level of geometric localization is used, the 
number of pixels to process may increase dramatically. The user must 
decide the appropriate amount of localization to properly balance the 
CPU/graphics load. In addition, the performance can be varied 
dramatically by the user-specified distance error tolerance. In Table 2, 
we show the effects on performance with a varying error tolerance. 

Average Total Per-frame Proximity Query Times
Demo #Tris Isect Pts GeForce3 IR2 Rage Pro LT

Cylinders 2000 513 12ms 61ms 45ms
Tori 5000 1412 71 262 257

Heart 8000 317 149 329 434
Rigid 15000 2537 313 1001 966

Table 1: Performance timings for dynamics simulations. The number of triangles, average 
number of intersection points, and average time to run proximity queries per frame is 
reported for error tolerance d (see Table2). Timing data was gather from three machines, a 
Pentium4 1.8GHz desktop with a 64Mb GeForce3, a SGI 300MHz R12000 with 
InfiniteReality2 graphics, and a Pentium-III 750Mhz laptop with ATI Rage Pro LT graphics. 

Effects of Error Tolerance on Performance
Error Isect Pts/Frame GeForce3 IR2 Rage Pro LT
d/4 89605 548ms 1701ms 2846ms
d/2 11238 169 578 689
d 1413 71 262 257
2d 177 32 189 103
4d 22 15 56 40

Table 2: The effect on performance when changing the distance error tolerance d. The 
average number of intersection points per frame is also reported. We used proximity 
queries on the deformable tori demo. The error determines the number of pixels used in 
the image-based operations. Systems with low graphics performance are more directly 
affected by the choice of d; however, as the error is increased there is less dependence on 
graphics performance and the faster laptop CPU overtakes the InfiniteReality2 system. 
 

Although we focused most of our efforts on handling deformable body 
proximity queries, our system is also applicable to rigid body queries. 
We use a penalty-based collision response that acts on individual point 
samples that approximate our object. These point samples arise from 
our image-space proximity queries. Particles are allowed to penetrate 
objects in penalty-based collision response computation. When a 
penetration is detected, a spring based restoring force, whose 
magnitude is proportional to penetration depth, is then applied to the 
particle until it has separated from the object.  The measure of 
penetration is notoriously expensive to compute and limits the use of 
penalty-based techniques to mostly models decomposable into convex 
primitives. The generality and computational efficiency provided by 
our proximity query algorithms alleviates this problem. 

7 Conclusion and Future Work 
We have presented a hybrid geometry- and image-based algorithm for 
computing geometric proximity queries between two non-convex 
closed 3D polygonal objects using graphics hardware. This approach 
has a number of advantages over previous approaches. The unified 
framework allows us to compute all the queries, including penetration 
depth and direction and contact normals. Furthermore, it involves no 
precomputation and handles non-convex objects; as a result, it is also 
applicable to dynamic or deformable geometric primitives. In practice, 
we have found the algorithm to be simple to implement (as compared 
to similarly robust geometric algorithms), quite robust, fast 
(considering the complexity of the queries), and very flexible. We 
have developed an interactive system that shows proximity queries 
computed between 3D dynamic deformable objects to illustrate the 
effectiveness of our approach. 
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Plate 1 hybrid proximity query pipeline: Given two closed polygonal objects, a coarse object-space geometric localization step is performed to find an 
axis-aligned bounding box that contains a potential interaction (2). Inside the localized region, the lower-level image-space queries are performed. First 
the interior of each object is indentified using an incremental stencil parity test for a series of 2D slices across the volume (2). The set of point that are 
determined to lie in the interior of both objects form the intersection points between the objects (3). Then, the Voronoi diagram is computed inside a 
tighter region around the intersection points at the same resolution as the intersection resolution. The Voronoi diagram serves two purposes: associates 
intersection points with their closest object boundaries, and provides the distance field. The distance value at an intersection point gives the penetration 
depth, and the gradient gives the penetration direction. 

    

    
Plate 2 real-time dynamic deformable proximity queries: The same proximity query pipeline can be applied to dynamic deformable models where 
every vertex is assumed to change for every frame. The complex contacts between non-convex objects can result in disconnected intersection regions. 
Each cylinder model is composed of 2000 triangles and the average query time is 12ms for an average of 513 intersection points per query. The tori are 
composed of 5000 triangles and the query time is 71ms for 1412 intersection points. Each simulation performed at interactive rates on a Pentium4 
1.8GHz desktop with a 64Mb GeForce3. 

   
Plate 3 proximity queries on body heartbeat simulation: The proximity queries are used for
path verification of the organs during a precomputed breathing simulation. Here we can see
that the two ventricles are actually intersecting. The heart is composed of 8000 triangles and
the average query time is 149ms for an average of 317 intersection points. This simulation
performed at interactive rates on a Pentium4 1.8GHz desktop with a 64Mb GeForce3. 

Plate 4 multiple complex contact scenario in an
interactive rigid body simulation: Collision
responses are computed using a penalty-based
method that requires penetration depth computation.
Each ring is composed of 2500 triangles, average
query time is 313ms for 2537 intersection points. 
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