EDF scheduling on multiprocessor platforms: some (perhaps)
counterintuitive observations*

Joél Goossens Shelby Funk Sanjoy Baruah

November 26, 2001

Abstract

The earliest-deadline-first scheduling of hard real-time systems upon multiprocessor plat-
forms is considered. Several results that run somewhat counter to intuition are presented. With
respect to interprocessor migrations, it is shown that what seem like intuitive heuristics for
decreasing the number of such migrations may in fact severely exacerbate the problem. With
respect to scheduling periodic task systems, it is demonstrated that uniprocessor results which
permit the efficient identification of worst-case system behavior do not extend to multiprocessors.

1 Introduction

In hard-real-time (HRT) systems, there are certain basic units of work, known as jobs, which
must be executed in a timely manner. In one popular model of hard-real-time systems, each job
is assumed to be characterized by three parameters — an arrival time, an ezecution requirement,
and a deadline, with the interpretation that the job must be executed for an amount equal to its
execution requirement between its arrival time and its deadline.

Given the specifications of a HRT system, feasibility analysis is the process of determining
whether the system can be executed in such a manner that all jobs do indeed complete by their
deadlines. If a HRT is deemed feasible, then a run-time scheduling algorithm is responsible for
determining, during the execution of the system, which jobs[s] should execute at each instant in
time such that all job deadlines are indeed met.

A HRT system is said to be preemptive if it is permitted that any executing job may be inter-
rupted at any instant in time, and its execution resumed later, with no additional cost or penalty.
The earliest deadline first scheduling algorithm (EDF) is a very popular run-time scheduling algo-
rithm for scheduling preemptive HRT systems. There are several reasons for this:

e EDF is known to be an optimal scheduling algorithm in uniprocessor systems: any pre-
emptive HRT system feasible on a uniprocessor will meet all deadlines if scheduled using
EDF.

e Very efficient implementations of EDF have been designed (see, e.g., [11]).

e It has been shown that when a set of jobs is scheduled using EDF, then the total number of
preemptions experienced can be bounded from above.

*Supported in part by the National Science Foundation (Grant Nos. NSF CCR-9988327 and ITR-0082866).

With respect to multiprocessor systems, it has been shown [2, 8] that no on-line scheduling algorithm
can be optimal. Nevertheless, EDF remains a predictable and resource-efficient algorithm to use
in multiprocessor systems — we have recently [3, 7] formally justified this assertion, by obtaining
conditions which permit us to ensure that a task system can be scheduled to meet all deadlines
using EDF upon a given multiprocessor platform, provided we know it to be feasible upon some
other multiprocessor platform. In addition, the other two advantages of the algorithm (efficient
implementations, and bounded preemptions) remain true; and furthermore, it can be shown that in
EDF-scheduled multiprocessor systems the total number of interprocessor migrations of individual
jobs can also be bounded from above.

Encouraged by this evidence demonstrating that EDF tends to behave favorably in multiproces-
sor systems, we have been working on further enhancing our understanding of multiprocessor EDF
scheduling. In doing so we have identified several aspects of EDF behavior upon multiprocessor
platforms that are somewhat unexpected and counterintuitive. In addition to being, in our opinion,
interesting in their own right, such anomalous behavior makes it difficult to extend uniprocessor
results to the multiprocessor case. We believe that these problems must be studied and understood
thoroughly, if we are to indeed develop a complete theory of multiprocessor scheduling that is as
useful and comprehensive as uniprocessor scheduling theory is today. In this document, we will
discuss two particular problems with multiprocessor scheduling;:

e When executing EDF upon a multiprocessor platform in which all processors are not of the
same speed (such multiprocessors are called uniform multiprocessors — Section 2), how do we
decide which job we should execute on which processor at each instant in time, in order that
the overall number of interprocessor migrations may be minimized?

¢ How do we determine whether a given periodic task system [10] can be scheduled by EDF
upon a multiprocessor platform comprised of several identical processors, such that all jobs
meet their deadlines?

With respect to the first of these questions, we show that the intuitive solution — the implementation
of EDF that we expected would minimize the number of interpreocessor migrations — turns out to
not always be the correct one. With respect to the second question, we have discovered, somewhat
unexpectedly, that techniques that work for uniprocessors (the concept of a critical instance of
job arrivals; the fact that synchronous job arrivals represent the worst case) do not generalize to
this multiprocessor problem. Hence the problem of determining a necessary and sufficient test for
determining whether a given periodic task system will be successfully scheduled by EDF upon a
particular multiprocessor platform remains open.

2 Definitions

2.1 Job model

We will assume that a hard-real-time system may be modelled as an arbitrary collection of individual
jobs. Each job J = (r,c¢,d) is characterized by an arrival time r, an execution requirement c, and
a deadline d, with the interpretation that this job needs to execute for ¢ units over the interval

[r,d).

Periodic tasks. Periodic task systems are a particular kind of hard-real-time system. The pe-
riodic task model has proven very useful for the modelling and analysis of real-time computer

application systems. In this model, each recurring real-time process is modelled as a periodic
task, and is characterized by four parameters — an execution requirement, a deadline delay,
an offset and a period. Each such periodic task generates an infinite sequence of jobs, which need
to be executed by the system. A periodic task 7 = (e, d, 0, p) with execution-requirement parame-
ter e, a deadline delay d, an offset o and period parameter p generates an infinite sequence of jobs
Jy=(o+k-p,e;,o+k-p+d), k=0,1,2,... (ie., it generates a job at each instant o + & - p, which
needs to execute for e units by a deadline of 0+ k-p+d, for all non-negative integers k). Interesting
sub-cases are synchronous systems, where all tasks are started at the same time (otherwise the
system is said to be asynchronous, or offset free if the offsets—i.e., the times at which the first
requests occur—are not fixed by the problem but may be chosen by the scheduler [5, 4]); implicit
deadline systems, where each deadline coincides with the period (i.e., each request must simply
be completed before the next request of the same task occurs)!; constrained deadline systems,
where the deadlines are not greater than the periods and arbitrary deadline systems, where no
constraint exists between the deadline and the period (notice that if the deadline is greater than
the period, many requests of a single task may be simultaneously active, even if the system is
feasible, i.e., all deadlines are met). The utilization of a periodic task is defined to be the ratio of
its execution requirement to its period: the utilization u of task 7 = (e, d, 0, p) equals ;47.

2.2 Multiprocessors

In multiprocessor platforms there are several processors available upon which jobs may execute.
In this paper, we will be studying the scheduling of hard-real-time systems on multiprocessor
platforms. We assume that job migration is permitted: that is, a job that has been preempted on
a particular processor may resume execution on a different processor. Nevertheless, we would like
to limit the number of such interprocessor migrations in the schedules that we generate. We will
also assume that job parallelism is forbidden: each job may execute on at most one processor at
any given instant in time.

In this paper, we will study two kinds of multiprocessor machines. In identical multiprocessors,
all the processors are identical in the sense that they have the same computing power. By contrast,
each processor in a uniform multiprocessor is characterized by its own computing capacity, with
the interpretation that a job that executes on a processor of computing capacity s for ¢ time units
completes s x t units of execution. (Observe that identical multiprocessors are a special case of
uniform multiprocessors, in which the computing capacities of all the processors are equal.)

With respect to uniform multiprocessors, it is necessary to define some additional notation:

Definition 1 Let 7 denote an m-processor multiprocessor platform with processor speeds s1, ..., Sm,
where s; > ;41 fori=1,...,m — 1.

m(m): denotes the number of processors in m: m(7) .

s;(m): denotes the speed of the i** fastest processor of m: s;() .

S(m): denotes 7’s cumulative processing power: S(7) def Z:’l(f) si(m).

"With respect to synchronous, implicit-deadline systems, we note that such tasks are often represented by an
ordered pair of just two parameters: 7 = (e,p), with the first parameter representing the execution requirement and
the second, the period.

A(m): We define an additional parameter A(7) as follows:

m(m)
def Y ick i Sim)
= _T . 1
)\(ﬂ-) lg}cn<a%((7r) sk(w) ()

|

The parameter A\(7) needs some explanation. Intuitively, it measures the degree of “identical-
ness” of m — the closer 7 is to being an identical multiprocessor (one in which all processors are
the same), the larger the value of A(7). This value has an upper bound of (m(x) — 1), which occurs
when 7 consists of m(w) identical processors. At the other extreme, A\(7) is arbitrarily small when
the processors have very different speeds. For example, A(7) < e for the m(n)-processor platform

where s;41(7) < mfw) csi(m) for i =1,...,m(mw) — 1.

Some further definitions:

e A hard-real-time system I is said to be feasible upon a (uniprocessor or multiprocessor)
platform 7 if there exists some schedule of I upon 7 in which every job in I meets its
deadline.

e If A is an algorithm which schedules I on platform 7 to meet all its deadlines, then we say
that I is A-schedulable upon 7.

3 EDF upon uniform multiprocessors

In [3], we studied the EDF scheduling of HRT systems upon uniform multiprocessors. EDF was
originally defined for uniprocessors, and while the uniprocessor definition extends in a straightfor-
ward manner to identical multiprocessors, defining EDF for uniform multiprocssors involved more
effort. We now briefly present the defintion we adopted in [3].

EDF on uniform processors. Recall that the earliest deadline first scheduling algorithm (EDF)
chooses for execution at each instant in time the currently active job[s] that have the smallest
deadlines. In [3], we assumed that EDF is implemented upon uniform multiprocessor systems
according to the following rules:

1. No processor is idled while there is an active job awaiting execution.

2. When fewer than m jobs are active, they are required to execute upon the fastest processors
while the slowest are idled.

3. Higher priority jobs are executed on faster processors. More formally, if the j’th-slowest
processor is executing job Jy at time ¢ under our EDF implementation, it must be the case
that the deadline of J, is not greater than the deadlines of jobs (if any)executing on the
(7 +1)’th-, (5 + 2)’th-, ...,, m’th-slowest processors.

With this definition of EDF, we obtained the following results concerning the EDF-scheduling of
HRT systems upon uniform multiprocessors:

Theorem 1 ([3]) Let I denote an instance of jobs that is feasible on a uniform multiprocessor
platform 7. Let 7’ denote another uniform multiprocessor platform. If the following condition is
satisfied by platforms 7 and =':

S(n') = Ma') - s1(m) + S(m) (2)
then I will meet all deadlines when scheduled using the EDF algorithm executing on '.

Theorem 2 ([3]) Consider a set {7,...,7,} of implicit-deadline periodic tasks (i.e., each task
has its deadline parameter equal to its period) indexed according to non-increasing utilization (i.e.,

u; > ujyq for all i, 1 < ¢ < n, where u; def ;—z) Let U, def ;‘:1 uj. Periodic task system 7 will
meet all deadlines when scheduled on 7 using EDF, if the following condition holds
S(m) = Alm) - u1 + Un. (3)

|

One criticism of the results in [3] concerns our choice of definition for EDF. While there should
be little controversy about the choice of which jobs to execute at each instant in time — by very
definition of EDF, these are necessarily the earliest-deadline jobs — the decision on which of the
selected jobs to execute on which processor is not quite so obvious.

Recall that one of the claimed advantages of EDF on multiprocessors was the bound upon
the number of preemptions and interprocessor migrations — upon identical multiprocessors, this
number is bounded from above at the number of jobs. With uniform multiprocessors and the
above working definition of EDF, this bound no longer holds — indeed, the number of preemptions
and interprocessor migrations may approach the product of the number of jobs and the number of
processors, as the following example illustrates.

Example 3 Consider a uniform multiprocessor platform comprised of m processors, with the j’th
processor having computing capacity (m — j + 1), for j = 1,2,...,m. Consider an HRT instance
of n jobs (where n > m), with attributes as follows:

e Jobs Ji,...,Jn all arrive at time-instant zero; job Jj arrives at time-instant (kK — m), for
k=m+1,...,n.

e Job Ji has execution requirement (33, ,.,¢) for £ = 1,...,m; job J; has execution
requirement (> jr, ¢) for k=m+1,...,n.

e Job J; has deadline k- m for all k&, 1 < k < n.

EDF would assign the jobs priorities according to indices: job J; would have greater priority than
job Jj41 for all k. Hence, the j’th fastest processor would begin executing job J; at time-instant 0; at
time-instant 1, job Ji, which has an execution requirement of m units, would complete execution on
the fastest processor and the job on each processor would migrate to the next-fastest processor while
job J41 would begin execution on the slowest processor; at time-instant 2, job J; would complete
execution on the fastest processor and the job on each processor would migrate to the next-fastest
processor while job J;,, 12 would begin execution on the slowest processor; and so on. This scenario
repeats at each successive time-instant: the job on the fastest processor completes execution, causing
a cascade of migrations and the introduction of a new job on the slowest processor. As n — oo,
the number of interprocessor migrations therefore approaches (n x (m — 1)) — the product of the
number of jobs and the number of processors minus one; alternatively, each job ends up undergoing
an average of m — 1 migrations.

Bsg8gg88sd B8sd

ps _ (TIOTOOOOOOOOOOD

0 1 2 3 4 5 6 T 8 9 0 1 2 3 4 5
(c) (d)
EDF-MM EDF-NI

6 7 8 9

J1 = (3,4,5) Jo = (2,12,9) J3 = (2,6,10) Jq = (1,22, 11) J5 = (0, 17, 12)

(. (I = SRR

Figure 1: Different types of EDF on uniform multiprocessors.

|

Thus, while we can still derive an upper bound upon the number of preemptions and interpro-
cessor migrations, this bound is quite a bit higher than in the case of uniprocessors or identical
multiprocessors.

In an attempt to be able to have fewer interpocessor migrations, we considered different possible
implementations of EDF upon uniform multiprocessors: these implementations differ from one other
in that they migrate jobs under different conditions. These different possible implementations are
informally described below, and are illustrated in Figure 1 by considering the scheduling of a job
set, indexed according to EDF priority, upon a 4-processor uniform multiprocessor with processor-
speeds are s1 = 4, so = 3, s3 = 2 and s4 = 1. A more formal definition of the algorithms, including
pseudo-code, is provided in the appendix (Section A).

e The work-conserving EDF scheduling algorithm, or EDF-WC, is the version of EDF we
considered above. EDF-WC always assigns earlier-deadline jobs to faster processors. In this
case, jobs will migrate under two conditions. Firstly, when a new job J arrives with higher
priority than some currently-executing job, jobs with lower priority will migrate to slower
processors allowing J to begin execution on the appropriate processor. Secondly, if a job J
completes execution and there are lower priority jobs executing, these jobs will migrate to
faster processors. If all the processors were in use and there were jobs awaiting execution
when J completed execution, then the highest priority job awaiting execution will be allowed
to execute on the slowest processor. Note that a job arrival or completion may result in a
cascade of migrations. This can be seen at ¢t = 3 in Figure 1 (a), and in Example 3 above.

e The migration-balancing EDF scheduling algorithm, or EDF-MB, always ensures that the
idling processors are the slowest processors. Migrations only occur when a job J completes
execution on a processor P and there are jobs executing on processors slower than P. When a
new job arrives and there is at least one idling processor, the job will be assigned to the fastest
idling processor. If there are no idling processors, the newly arriving job will preempt the

lowest-priority executing job if it has higher priority — otherwise, it will wait for a processor
to become available. When a job completes execution, jobs executing on slower processors
will migrate according to priority. The highest priority job running on a processor slower
than p will migrate to the newly available processor. If this job was not executing on the
slowest processor, then the highest priority job executing on a slower processor will migrate
and so on until the job executing on the slowest processor migrates to the newly available
processor. This is illustrated at ¢ = 4 in Figure 1 (b).

e The migration-minimizing EDF scheduling algorithm, or EDF-MM, also ensures that the
idling processors are the slowest ones. EDF-MM uses the same algorithm as EDF-MB when a
new job arrives, causing no migrations. When an active job completes execution on processor
P and there are jobs awaiting execution, the highest priority waiting job will begin execution
on P. If no jobs are waiting and there exists at least one active processor slower than P, the
job that was executing on the slowest active processor will migrate to processor P. Thus, a
job completion will cause at most one migration. This algorithm is illustrated in Figure 1 (c).

e The non-idling EDF scheduling algorithm, or EDF-NI, never migrates jobs to take advantage
of fast idling processors. This algorithm is illustrated in Figure 1 (d).

As the names migration balancing and migration minimizing indicate, these algorithms are designed
to reduce the number of migrations that occur in a typical schedule. Indeed, while EDF-WC
may initiate migrations upon job arrivals and completions, EDF-MB and EDF-MM only initiate
migrations upon job completions. Our initial expectation was that any HRT system scheduled
using these variants of EDF — EDF-MB, EDF-MM, and EDF-NI — would always result in fewer
preemptions than if it were scheduled using the EDF-WC implementation (or “traditional” EDF);
our goal was to determine whether this decrease in the number of preemptions was worth the
expected loss in resource-utilization that results from the greater restrictions placed upon the
system. Somewhat to our surprise, however, this supposition proved false: as the following theorem
shows, what seem like intuitive heuristics for decreasing the number of interprocessor migrations
may in fact severely exacerbate the problem.

Theorem 4 When scheduling a given HRT system upon a particular uniform multiprocessor plat-
form, the number of migrations in the resulting schedule if EDF-WC is the EDF-scheduling algorithm
used is unrelated to the the number of migrations in the resulting schedule if EDF-MB or EDF-MM
is the EDF-scheduling algorithm used.

Proof. The crucial observation is that a single migration occurring upon job arrival may prevent
several migrations from occurring later in time. Below, we illustrate just such a situation where
EDF-WC actually results in fewer migrations than EDF-MB or EDF-MM (note that, since this
illustration involves only two processors, EDF-MB and EDF-MM produce the same schedule).
Figure 2 illustrates that a single migration may prevent future migrations from occurring. When
EDF-WC is used Jj is preempted at ¢ = 1, which allows Ji, ..., J, to execute completely on processor
p1. When EDF-MB is used, Jy completes its execution on p; after J; arrives even though J; has
higher priority. Job J; migrates to p; once Jy completes, but its completion time is delayed due to
the % unit of execution on py. This, in turn, forces J> to begin execution on py and then migrate
to p1, and so on through J,,. Thus, the single migration that occurs when using EDF-WC prevents
the n migrations that occur when using EDF-MB. |

== =

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
(a) (b)
EDF-WC EDF-MB
Jo =1(0,3,8) Jy =(1,4,6) Jo = (3,4,6) Jg = (5,4,6) ... Jn = (2n — 1,4,6)

L1 [m &

81 =2s82=1

Figure 2: EDF-WCmay result in fewer migrations.

4 EDF-feasibility analysis

In this section, we consider the scheduling of HRT systems that are comprised entirely of periodic
tasks, upon identical multiprocessor platforms. In uniprocessor platforms, such systems have been
thoroughly studied, and EDF-scheduling of such systems is very well understood. However, the
results reported here indicate that many of the important uniprocessor results do not extend to the
identical multiprocessor case.

4.1 The synchronous case

Recall that a synchronous periodic task system is one in which all periodic tasks are assumed to
have the same offset parameter (without loss of generality, assumed equal to zero). That is, all
tasks are assumed to have their first jobs arrive at time-instant zero. For uniprocessor platforms,
synchronous systems are very popular in the literature for a least three reasons:

1. They occur quite often in applications.

2. The synchronous case constitutes the worst case from a schedulability point of view — if
a synchronous system is schedulable, then the periodic task system obtained from this syn-
chronous system by assigning arbitrary offsets to the different periodic tasks is guaranteed to
also be schedulable.

3. There are often much smaller feasibility intervals (i.e., a finite interval such that it is sure that
no deadline will ever be missed iff, when we only keep the requests made in this interval, all
deadlines for them in this interval are met) in the synchronous case than in the asynchronous
one. Indeed, while the length of the feasibility interval for asynchronous systems is approxi-
mately twice the least common multiple of the periods of the tasks (and thus of exponential
size) [9], it is of pseudo-polynomial length for bounded-density synchronous systems [1].

For multiprocessors platforms, we believe that the point 1 remains valid, however, we shall see
that points 2 and 3 do not hold in the multiprocessor case. We shall first examine the point 2
below; the point 3 will be examined specifically in section 4.2.

For uniprocessor platforms using EDF we know that the synchronous case is the worst case.
More formally:

1 1 !

T2 | | | | | |
4 8 12 16 20 24

1 2 1 2 Y 2 1 2 Y
7 | | | I |
0 6 6 1212 1818 24

Figure 3: The synchronous schedule (the EDF schedule repeats after time ¢ = 24).

N e

0 4

73
4 9

Figure 4: The first request of 73 misses its deadline at time ¢ = 9.

Theorem 5 ([10]) Let S = [1; = (ei,di,pi) | i = 1,...,n] denote a periodic task system with
arbitrary deadlines. If S is EDF-schedulable on a uniprocessor platform in the synchronous case,
S is EDF-schedulable on the same platform in all asynchronous situations.

In summary, Theorem 5 says that in uniprocessor systems the synchronous case is the worst
case. The significance of this property is the following: to determine whether a periodic task
system is EDF-schedulable for all possible offset values, it suffices to test the schedulability of just
the synchronous case. We shall see that this property does not hold for multiprocessor platforms.

Theorem 6 For identical multiprocessor platforms using EDF and implicit deadline periodic task
sets, the synchronous case is not necessarily the worst case.

Proof. Consider the following platform composed of two (identical) unit-speed processors and
the following periodic task set [11 = (e;1 = 4,d1 = p1 = 8), 72 = (ea = 4,dy = py = 8),73 = (e3 =
6,ds = p3 = 6)]. The system is EDF-schedulable in the synchronous case as exhibited by Figure 3.
But the system is not EDF-schedulable in the asynchronous situation given by o1 = 02 = 0 and
03 = 3 as exhibited in Figure 4. In Figures 3 through 6, + represents a task request, O a
deadline (we omit the representation of the deadline when considering implicit deadline systems)

4 a deadline failure and 5% an execution during the interval [a,b) on the processor c. (Execution

in the interval [a,a + 1) on processor c is denoted %.) [|

It may be noticed that the example illustrated in Figure 3 shows another interesting phe-
nomenon: in case of tied deadlines, the method chosen to break ties is significant in the multi-
processor case (this is not the case in uniprocessors — see, e.g., [6]). Indeed, in the schedule of
Figure 3, at time ¢ = 18, the three tasks are active and their deadlines coincide, if the scheduler
assigns the processors to 71 and 75 (and consequently suspends 73) 73 will miss its deadline.

Since implicit-deadline periodic task systems are a special case of arbitrary-deadline periodic
task systems, we immediately obtain the following corollary:

Corollary 7 For uniform multiprocessor platforms using EDF and arbitrary-deadline periodic task
sets, the synchronous case is not necessarily the worst case.

} 2 i 2
” 3 6 9 O
t 1 ¥ 1
’ 0 9 lé
Figure 5: The second request of 73 misses its deadline at time ¢ = 12.

Proof. The example used in the proof of Theorem 6 is also an example for the general case of
uniform multiprocessor platforms with arbitrary-deadline periodic task sets. |

4.2 The first busy period

Liu and Layland [10] noticed that, for the synchronous uniprocessor case, it is not necessary to look

at a full hyper-period (i.e., the interval [0, P) where P aef lem{p; | 1 <4 < n}) to detect deadline
failures: the interval [0, L), where L is the first instant after time-instant zero at which EDF would
idle the processor, is a feasibility interval. If U = Y7, ;—:’, < 1, we always have L < P; but if U = 1
there is no idle slot after the system start time. In previous work [6] we introduced the notion of
an idle point.

Definition 2 The time ¢ is an idle point of the schedule of a system if all requests occurring strictly
before ¢ have completed their execution before or at time £.

Time-instant zero is clearly an idle point in the EDF-schedule of any synchronous periodic task
system.

Theorem 8 ([6]) When EDF is used to schedule a synchronous set of tasks with arbitrary dead-
lines on a single processor and there is a deadline failure at time ¢, there is no processor idle point
in the interval (0, t).

Consequently the interval [0, L) is a feasibility interval for synchronous arbitrary deadline sys-
tems, where L is the position of the first idle point after time-instant zero. We shall see that the
property given by Theorem 8 does not hold for multiprocessor platforms. We consider first the case
of constrained deadline systems.

Theorem 9 For identical multiprocessor platform using EDF and constrained deadline synchronous
periodic task sets, [0, L) is not a feasibility interval, where L corresponds to the first idle point after
the origin in the schedule.

Proof. Consider the platform composed of two (identical) unit-speed processors and the task
set: [Tl = (61 = 3,d1 =p1 = 6),7’2 == (62 = 3,d2 =p2 = 6),73 = (63 = 5,d3 = 5,p3 = 8)] Figure 5
gives the schedule using EDF on the platform. The first deadline miss occurs at time ¢ = 13 while
L =6. [|

Notice that the example considered in the proof of Theorem 9 does not cover the case of implicit
deadlines. We shall see that for implicit—deadline systems the same phenomeon exists.

Theorem 10 For identical multiprocessor platform using EDF and implicit deadline synchronous
periodic task sets, [0, L) is not a feasibility interval, where L corresponds to the first idle point after
the origin in the schedule.

10

|
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
¥ 1 ¥ 1 1 1 1 E 1 1 1
T2 L] L] L] L] [] (I
35 911 1517 2123 2830 35 39 4547 5153
2 ¥y 2 ¥y 2 ¥y 2 ¥y 2 ¥ 2 ¥ 2 § 2 ¥y 2 y 2 ¥ 2 4
73 | [I [| | | |
0 55 1010 1515 2020 2525 3030 3535 4040 4545 5050 55
p 1 y1 vl y o1 yo1 ¥
1| | | | | | |
54 57 60 63 66 69 72 75 78 81
vy 1 1 1 1 2
T2 [] L]
5759 6365 7072 77 80
¥ 2 ¥ 2 v 2 ¥ 2 2 v 1
73| [|
55 6060 6565 7070 7575 80 81 8%

Figure 6: The 18th request of 73 misses its deadline at time ¢ = 85.

Proof. Consider the platform composed of two (identical) unit-speed processors and the task
set: [7’1 = (61 = 3,d1 =p1 = 6),7‘2 = (62 = 2,d2 = P2 = 7),7’3 = (63 = 5,d3 = p3 = 5)] Figure 6
gives the schedule using EDF on the platform. The first deadline miss occurs at time ¢ = 85 while
the first busy period ends at time t = 5. |

5 Conclusions

In this paper we have considered the problem of scheduling hard real-time systems using EDF upon
multiprocessor platforms. Upon uniform multiprocessors, we have shown that there may occur, in
general, many more interprocessor migrations than is the case upon uniprocessors and identical
multiprocessors, and that what seem like intuitive heuristics for decreasing the number of such
migrations may in fact severely increase the number of migrations. With respect to scheduling
periodic task systems upon identical multiprocessors, we observed two interesting facts: first, that
the synchronous case is not necessarily the worst case (as is true upon uniprocessors), and next,
that the first busy period is not a feasibility interval (once again, in contrast to the uniprocessor
case). These results lead us to conclude that scheduling upon multiprocessor platforms is not an
obvious extension of our knowledge concerning the uniprocessor case, and much more research is
required to cover specifically this topic.

References

[1] BARUAH, S., HOWELL, R., AND ROSIER, L. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems: The
International Journal of Time-Critical Computing 2 (1990), 301-324.

[2] DERTOUZOS, M., AND MOK, A. K. Multiprocessor scheduling in a hard real-time environ-
ment. IEEE Transactions on Software Engineering 15, 12 (1989), 1497-1506.

[3] FUNK, S., GOOSSENS, J., AND BARUAH, S. On-line scheduling on uniform multiprocessors.
In Proceedings of the 22 IEEE Real-Time System Symposium (London, England, December
2001).

11

[4] GOOSSENS, J. Scheduling of Hard Real-Time Periodic Systems with Various Kinds of Deadline
and Offset Constraints. PhD thesis, Université Libre de Bruxelles, Belgium, 1999.

[6] GOOSSENS, J., AND DEVILLERS, R. The non-optimality of the monotonic priority assignments
for hard real-time offset free systems. Real-Time Systems: The International Journal of Time-
Critical Computing 13, 2 (1997), 107-126.

[6)] GOOssSENS, J., AND DEVILLERS, R. Feasibility intervals for the deadline driven scheduler
with arbitrary deadlines. In Proceedings of the International Conference on Real-time Com-
puting Systems and Applications (Hong Kong, December 1999), IEEE Computer Society Press,
pp. 54-61.

[7] GoossENs, J., FUNK, S., AND BARUAH, S. Priority-driven scheduling of periodic task
systems on uniform multiprocessors. Real Time Systems. To appear.

[8] HoNG, K., AND LEUNG, J. On-line scheduling of real-time tasks. In Proceedings of the
Real-Time Systems Symposium (Huntsville, Alabama, December 1988), IEEE, pp. 244-250.

[9] LEUNG, J., AND MERRILL, M. A note on the preemptive scheduling of periodic, real-time
tasks. Information Processing Letters 11 (1980), 115-118.

[10] Liu, C., AND LAYLAND, J. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM 20, 1 (1973), 46-61.

[11] Mok, A. Task management techniques for enforcing ED scheduling on a periodic task set. In
Proc. 5th IEEE Workshop on Real-Time Software and Operating Systems (Washington D.C.,
May 1988), pp. 42—-46.

Appendix

A EDF scheduling algorithms on uniform multiprocessors

In this appendix, the various different EDF scheduling algorithms are described in more detail. In
all cases, the EDF algorithms satisfy the following basic conventions:

e Job priorities are assigned according to absolute deadlines with earlier deadlines receiving
higher priority. If two or more jobs have the same deadline, priorities are assigned arbitrarily
but consistently (perhaps using the job identifiers to break such ties).

¢ Scheduling is non-idling — 4.e., a job will not wait to be executed if there is an idling processor.

e Lower priority jobs wait. If the instance is being executed on an m-processor platform and
there are n > m active jobs, then the n—m lower—priority jobs are the ones awaiting execution.

If a real-time instance is being scheduled on a uniprocessor or an identical multiprocessor
platform, these three rules define a unique schedule in that every job is executed in well-defined
time intervals. (In the case of instances running on identical multiprocessors, a schedule may vary
with respect to processor assignments but this will not affect the execution time of the job.) If it
is running on a uniform multiprocessor, however, the execution time of a job may vary depending
on the processor assignment and, hence, the schedule is not necessarily unique. Below, various
different EDF strategies are described and pseudo—code is provided.

12

First, a few notes on notation. The variable j always refers to a job and p to a processor.
In all cases, processors are assumed to be indexed according to speed — i.e., p; is faster than p;
whenever ¢ < j. Furthermore, processor speeds are assumed to be unique. Minor adjustments would
be required if some processor speeds are identical. There are a few functions used in the code. The
function pri(j;) returns the priority of j; (where pri(j;) < pri(jx) indicates j; is a higher—priority
job than ji). The function job(p;) returns the job currently executing on processor p;. Similarly,
the function processor(j;) returns the processor on which j; is executing. The number of processors
of the system is denoted by m. The variable £ refers to the number of non-idling processors (i.e.,
this property is maintained as an invariant in the following algorithms).

EDF-WC Work—conserving EDF. For every t > 0, if j; and j; are both executing and if j; has higher
priority than jg, then j; is executing on a faster processor than jz. When a new job arrives
or a currently-running job completes, the jobs are re-sorted by priority.

Job-Arrival(j;)
% Find py, such that pri(job(px)) > pri(ji) > pri(job(pg—1))

k=1
While (k < £ and pri(j;) > pri(job(p)))
k=k+1;
If (k> m)
Place j; on the queue;
Else {
If(t=m){
Place job(p.,) on the queue;
g=L4-1
}
Else {
q=14
L=04+1;

}

For proc = q downto k do

Move job(pproc) t0 Pproc+1;
Place j; on py;
}
Job-Complete(y;)
k = processor(j;);
For proc=k+ 1 to £ do
Move jOb(pproc) 10 Pproc—1;
If (¢ = m and queue not empty)
Move highest—priority job on the queue to py,;
Else
L=/0—-1;

Notice that both job arrivals and job completions can cause cascading migrations.

EDF-MB Migration—balancing EDF. In this case, when a job arrives, it is placed on the slowest
non-idling processor. If there are no non—idling processors, it will preempt the lowest—priority
executing job, if appropriate. When a job j; completes, the highest—priority job executing on

13

a processor slower than processor(j;) is moved to processor(j;). This is repeated until the
job executing on the slowest non—idling processor is moved to a faster processor.
Job-Arrival(j;)
If (¢ <m){
Place j; on processor py1;
L=L+4+1;
}
Else {
% Find the processor executing the lowest-priority job
k=1,
For a =2 to £ do
It (pri(job(pa)) > pri(job(pi)))
k= a;
If (pri(ji) < pri(job(px))){
Place job(py) on the queue;
Place j; on processor pg;
} Else
Place j; on the queue;

Job-Complete(y;)
k = processor(j;);
While (k # £){
Find p; such that pri(job(p;)) = min{pri(job(p;))|k < j < £};
Move job(p;) to pk;
k=1
}
If (£ = m and the queue is not empty)
Move highest—priority job on the queue to p,,;
Else
L=0—1;

EDF-MM Migration—minimizing EDF. Similar to EDF-MB, when a job arrives, it is placed on the
slowest non—idling processor. If there are no non—idling processors, it will preempt the lowest—
priority executing job, if appropriate. However, this algorithm differs from EDF-MB in the
way it treats job completions. If there are jobs in the wait—queue when a job j; completes,
the highest—priority job on the queue is moved to processor(j;). Otherwise, the job executing
on the slowest non—idling processor is moved to processor(j;)

Job-Arrival(j;)
Same as EDF-MB Job-Arrival(j;)
Job-Complete(;)
k = processor(j;);
If (£ = m and the queue is not empty)
Move highest—priority job on the queue to pg;

Else {
Move job(pg) to pg;
L=0—1;

14

EDF-NI Non—idling EDF. Jobs do not migrate due to job arrivals or completions. If a job is
preempted, it may restart on any processor. While it makes most sense for a job to be placed
on the fastest idling processor when a job arrives, this is not a requirement of the algorithm.
Hence, this is not a deterministic algorithm.

Job-Arrival(j;)
If (¢ =m){
Let jx be the lowest—priority executing job;
If (pri(js) > pri(je))
Place j7; on the wait—queue;
Else{
pg = processor(ji);
Place ji on the queue;
Place j; on py;
¥
}
Else {
Let p, be any idling processor;
Place j; on pg;
=041
}
Job-Complete(y;)
If (queue is not empty){
k = processor(3j;);
Move highest—priority job on the queue to pg;
}
Else
L=/0—-1;

15

