A 3D Magnetic Force Manipulator DC Prototype

Leandra Vicci
Microelectronic Systems Laboratory
Department of Computer Science
University of North Carolina at Chapel Hill
17 October 2001
(Rev 2) 4 September 2003

Abstract

Summary A potentially useful instrument for the biological sciences would be a 3 dimensional force microscope (3DFM) for measurement of 3 dimensional viscous and elastic fields at sub micrometer scale in-vitro and in-vivo. Substantial development has been conducted on various aspects of this problem, but a general instrument having this capability does not yet exist. All approaches I know of utilize a microscopic bead as a mechanical probe, the position of which can be sensed, and the force on which can be controlled. One force technique is "optical tweezers." This technique requires high optical field intensities which interact strongly with many materials and may produce undesired side effects on in-vivo experiments. Alternatively, magnetic techniques use a magnetic bead driven by low frequency magnetic fields which only interact weakly with most biological materials. Related prior work includes high gradient techniques [Haber00], a close proximity single pole rheometer [Bausch98,99], and a two dimensional manipulator [Amblard96]. To my knowledge, our work is the first attempt to implement a full three dimensional magnetic manipulator. A low frequency (DC) prototype magnetic circuit and drive electronics have been designed and built to explore the capabilities of the magnetic technique for a 3DFM. This report comprises a brief description of the DC prototype, and a complete set of its design documents. This is a report of work in progress, and does not present any results of experiments performed on the prototype.

1 Conceptual design

The magnetic manipulator is intended to be a subsystem to work in concert with other components of a 3DFM. The target was to produce three dimensional nanonewton forces on sub micrometer magnetic beads with a bandwidth of the order of $10^{4}[\mathrm{~Hz}]$.

A conceptual design phase preceded the design of the first prototype. The conceptual phase began at a very high level of abstraction, leaving many important implementation issues to be determined. This section describes the conceptual design at this abstraction level.

1.1 Spatial coexistence

Whatever magnetic structure is devised, it must provide adequate space to accommodate other subsystems requiring access to the sample under test (SUT).

This includes a sample holder attached to a 3 -axis mechanical actuator. Particular attention is paid to the region very local to the SUT in which a liquid sample cell having optical quality cover glasses must be fit. The mounting of the sample cell to actuators and the actuators themselves can occur a small distance away from the SUT where there is less spatial congestion.

It also includes an optical tracking subsystem, the current embodiment of which uses reentrant high numerical aperture (NA) optics which require an unobstructed space comprising two reentrant cones corresponding to the NA of the system. Therefore, under the assumption that the magnetic field geometry is to be formed by using high permeability magnetic cores which are optically opaque, it is desirable that the number of field producing poles be small, and the angular separation between the poles be large. Ostensibly, the minimum number of poles needed to provide forces in three dimensions is four.

1.2 Ideal magnetic circuit

The conceptual design starts with idealized assumptions: a linear, low hysteresis magnetic core material of very high permeability. In this idealization, a magnetic structure can be envisioned with poles converging from a magnetically interconnecting shell to sharpened tips near the SUT, each pole being magnetically driven by a current carrying coil. This situation is reasonably well modeled by a monopole at the location of each tip with strength proportional to the flux induced in its pole by the various coils in the system. The sum of the aggregate monopole strengths in this model must be zero because the coils can only generate dipole magnetization.

1.3 The force equation

The force on a permeable soft magnetic bead is caused by the interaction between an incident magnetic field \boldsymbol{B} and the magnetic dipole moment \boldsymbol{m} induced in the bead by \boldsymbol{B} (see Appendix A). Subject to saturation properties of the bead material,

$$
\begin{equation*}
\boldsymbol{m}=\frac{\pi d^{3}}{2 \mu_{0}}\left(\frac{\mu_{r}-1}{\mu_{r}+2}\right) \boldsymbol{B} \tag{SIunits}
\end{equation*}
$$

TR01-031(Rev2)
where μ_{0} is the permeability of free space, μ_{r} is the relative permeability of the bead, and d is the diameter of the bead. This agrees with the approximate result $\boldsymbol{m}=\left(4 \pi a^{3} / 3 \mu_{0}\right) \chi \boldsymbol{B}$ published by [Amblard96] in the limit of small $\chi=\mu_{r}-1$, where a is the radius of the bead. The force exerted on \boldsymbol{m} by \boldsymbol{B} is,

$$
\boldsymbol{F}=\frac{\pi d^{3}}{2 \mu_{0}}\left(\frac{\mu_{r}-1}{\mu_{r}+2}\right) \nabla B^{2} .
$$

The magnitude B of the field generated by a magnetic monopole is of the form B_{p} / r^{2} where B_{p} is the pole strength and r is the distance from the monopole. The corresponding gradient ∇B of the field is $2 B_{p} / r^{3}$, directed towards the monopole. Thus the force on a bead is towards the monopole, varying as B_{p}^{2} / r^{5}. Clearly, the distance of the monopoles from the bead are of primary concern in the optimizing the magnitude of the force.

1.4 A tetrahedral geometry

A physical approximation of the monopole model uses tapered, high permeability pole cores, radially disposed about the bead location, driven by current carrying coils, with their outer ends connected by a high permeability shell to provide a magnetic flux return path for each core through the other cores. Ideally then, the $i^{\text {th }}$ of n physical poles approximates n monopoles, the $i^{\text {th }}$ having strength B_{i} and the others having strengths B_{j} such that $\sum_{j \neq i}^{n} B_{j}=-B_{i}$.

Since the cores are optically opaque and occupy space, they compete with the system optics for solid angle and with the SUT mechanicals for volume. It is therefore desirable to minimize the number of poles used. Since a monopole force is central, i.e., directed toward the monopole, it

The conceptual design, shown without the outer magnetic return path shell takes at least four monopoles to create forces in three dimensions. A symmetric design as shown here comprises four poles converging from the vertices of a virtual equilateral tetrahedron (ET) towards its center. This geometry is fortuitous in that there are three orthogonal lines passing through the center, each having the maximum possible angular separation from the closest poles. This conveniently provides an optical axis normal to a plane for the slide holding the SUT.

Parametric studies showed this geometry to be close to optimal for given pole strength B_{0}, and separation r_{0}. Consider k poles of strength B_{0} / k equally spaced around a circle of radius a, coaxial with \boldsymbol{r}_{0} at location r_{p}. The tetrahedron is represented by $n=3$, $a=0.94 r_{0}, r_{p}=-0.33 r_{0}$. The force was found to be independent of k for $k>1$, and within 11% of the maximum, which occurs at $r_{p}=-0.6$ (see Appendix B).

2 Physical implementation

The conceptual design was done at a very high level of abstraction. This luxury is forfeited in the process of implementing a buildable design. Consequently, a number of trade offs and compromises must be made. The primary goal was to maximize the amount of force attainable without interference to the 0.7 NA optics used by the existing experimental setup.

2.1 Spatial considerations

It was decided not to intrude into the solid angle of the optical path, which comprises two reentrant cones, each with included angle of about 89°. It was also decided not to cut into the lens bodies to accommodate the magnetic poles. The lenses were Mitutoyo M Plan Apochromatic APO100 with a working distance of $6[\mathrm{~mm}]$. The lens bodies fill an angle of 110° which is very close to the 109.5° included angle between vertices of an ET.

The finite thickness of the magnet poles themselves precludes even approximating the pole angles of the abstract design unless the lens body or the poles are modified with relief cuts. It made more sense to modify pole angles from 35.3° to 22.5° inclination from horizontal, while still placing the pole tips at the vertices of an ET. A pole tip taper angle of 9.5° leaves 7.75° angular clearance from the

The system lenses lens body, but placement of the pole tips on an ET large enough to accommodate the SUT cell uses up nearly all of the linear pole to lens body clearance. (See Appendix C, sheet 1.)

Due to the $1 / r^{5}$ force dependence, the size of the SUT cell is a very strong determiner of the achievable bead force. It was desired that the cells comprise readily available materials, that they provide a reasonably well sealed liquid SUT environment, and that they have adequate optical properties. These factors led to the choice of a sandwich comprising two microscope cover slips separated by Scotch \#136 tape (3mil transparent double-backed) with a hole punched to contain the SUT. The thickness of the cell is approximately 440 [$\mu \mathrm{m}$].

The pole tips are of course not sharp points, but may be regarded as spherical. For very high permeability, the virtual monopole location is approximately at the center of the sphere. Thus for a horizontal cell, the vertical separation between upper and lower monopoles must be at least the sum of the sphere radii (each specified as $\leq 50[\mu \mathrm{~m}]$) and the cell thickness. Allowing $160[\mu \mathrm{~m}]$ clearance for handling and insertion of the cell, the vertical separation of each tip from the center of the cell is $300[\mu \mathrm{~m}]$, or $350[\mu \mathrm{~m}]$ vertically from each monopole to the center. The total distance of each monopole from the cell center is $350 / \cos (109.5 / 2)=606[\mu \mathrm{~m}]$. This is the closest we can reasonably expect to get the monopoles with this SUT cell and design approach.

2.2 Core materials

Second only to compactness, the B^{2} force dependence motivated us to maximize the field strength. Even with very high permeability μ_{r}, leakage flux between poles everywhere except at the tips is wasted flux, and cannot be avoided. Since B is proportional to the magnetomotive force (MMF), or Ampere turns linking the magnetic path, this can be compensated at the expense of coil size and current. Of course there are thermal limitations due to resistive losses in the coils.

For high μ_{r} the B field is also strongly dependent on the geometry of the air gap near the pole tips. The bigger the separation, the weaker the field. In fact, any air gap in the main flux path will strongly affect the B field because $\mu_{r}^{\text {core }}>\mu_{r}^{\text {air }}=1$. For example, if $\mu_{r}^{\text {core }}=1000$, introducing a $100[\mu \mathrm{~m}]$ gap in a toroidal core 3 [cm$]$ in diameter will approximately halve any induced B field. This has serious implications for the core design, where uniformity of performance of the four poles is important. It is therefore important that the design avoid spurious air gaps; or if they cannot be avoided, that they be controlled for uniformity.

While high $\mu_{r}^{\text {core }}$ is important, even more important is high core saturation $B_{s a t}^{\text {core }}$. This is because we are trying to funnel as much flux as possible through the tapered pole to exit at the tip. For a given total flux Φ_{m}, the flux density B varies inversely with the core area. For high flux, it will exceed $B_{\text {sat }}^{\text {core }}$ at some place in the taper where the area gets too small. The flux density at the tip is limited by $B_{s a t}^{\text {core }}$. Excess flux escapes from the sides of the taper in the saturated parts of the tip. Increasing the MMF merely moves the saturation point back up the taper.

The highest saturation materials available are vanadium permendur and hiperco, both of which are not only expensive, but extremely difficult to fabricate. A good compromise is ASTM A 848 Magnet Iron which saturates at about $1.6[\mathrm{~T}]$.

Complicating things even further, these desirable core materials are electrically conductive metals which means, according to Faraday's law $\nabla \times \boldsymbol{E}+\partial \boldsymbol{B} / \partial t=0$, changes in B induce voltage gradients and consequently cause eddy currents in the core. The more rapid the change, the greater the current. This limits the bandwidth over which the core is operational. For the design in question, the bandwidth is in the low tens of Hertz, essentially DC. Accordingly, and to forestall false expectations, this design is called, a "DC Prototype."

Conventional methods of reducing eddy currents are by laminating thin sheets of the material to make up the core, or to mix a powder of the material with a non-conductive binder and cast the core. Lamination offers possibilities which can be explored, but powders rarely approach either the permeability or saturation properties of the base material.

Another possibility is a class of materials called "Metglas." These materials are metals formed as an amorphous rather than a crystalline solid by a process of hyperfast chilling of the metal from the molten state. Magnetic alloys such as mumetal are commercially produced as metglas with very good properties. Whether or not high saturation metglas materials can be obtained I do not know.

While not properly an issue for the DC prototype, this problem will have to be addressed if this design is to be developed for higher bandwidths.

2.3 Coil considerations

Looking at the concept picture on page 3, it is evident that the coils are awkward. Not only must they be tapered in the front, but how they will fit within the magnetic shell (which is conveniently not shown) is problematical. Add to this the need for lots of ampere turns in a limited conductor cross section, and the fact that winding coils with steeply conical end profiles is exceedingly difficult, it becomes apparent that this geometry leaves a lot to be desired.

This problem was addressed by moving the coils elsewhere. Considering a magnetic circuit model of the magnetic paths, each pole can be modeled as a MMF (depicted as overlapping circles in the figure) induced by the current in its coil, in series with a reluctance (depicted by the resistor symbol, or zigzag line) partially due to the pole core itself, but mostly incurred at the air gap between the pole tip and the location of the bead. The topology of the conceptual design consists of two nodes (depicted as os) representing the magnetic shell and the bead respectively, connected by four arcs representing the four poles.

This topology can be extended by replacing the shell node by four back end nodes, each representing the back end of a pole, and by moving the MMFs from the pole arcs to the arcs connecting the back end nodes. In this topology, each pole is driven by two MMFs in parallel. The reluctances shown in
 series with each MMF those of the cores connecting the back end nodes and are small relative to the pole reluctances. Thus to a first approximation the effective MMF driving a pole is the average of the MMFs connected to its back end node. To the extent that the MMFs differ, they cause flux to circulate in the ring connecting the back end nodes.

This topology allows considerable flexibility in choice of the geometry used to implement it. As shown in Sheet 1 of the drawings in Appendix C, the coils were chosen to be easily wound on cylindrical bobbins with copious cross sectional area to allow for large Ampere turns.

2.4 A potential but probably not serious degeneracy

So called parasitic imperfections incurred by using real components which are only imperfectly represented by simple circuit models are often the cause of engineering headaches. They rarely work to one's advantage. However in this case, they probably do. In particular, they probably remove a mathematical degeneracy.

That is, we chose four poles as the minimum number to provide forces in full three dimensions. But the idea that the pole strengths sum to zero is a constraint that nullifies one degree of freedom. You can appreciate this if you try to find a set of drive currents that will pull the bead in a direction exactly half way between two poles, or to a direction opposite one of the poles.

The circuit models of the previous section enforce the concept of zero net flux from the four pole tips; or in other words, the sum of the strengths of the approximated monopoles
is zero. In fact, there are significant parasitic reluctances not shown due to leakage flux between various parts of the cores connecting the back end nodes and parts of the pole cores themselves. These parasitics mitigate the effects of the bothersome constraint. It remains to be seen how effective this reprieve will be.

References

[Amblard96] François Amblard, B.Y. Pargellis, A. Pargellis, S. Leibler, "A magnetic manipulator for studying local rheology and micromechanical properties of biological systems," Review of Scientific Instruments, v. 67 no.3, March 1996, pp818-827.
[Bausch98] Andreas R. Bausch, F. Ziemann, A. A. Boulbitch, K. Jacobson, E. Sackmann, "Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Rheometry," Biophysical Journal, v.75, October 1998, pp2038-2049.
[Bausch99] Andreas R. Bausch, W. Möller, E. Sackmann, "Measurement of Local Viscoelasticity and Forces in Living Cells by Magnetic Tweezers," Biophysical Journal, v.76, January 1999, pp573-579.
[Haber00] Charbel Haber, D. Wirtz, "Magnetic Tweezers for DNA micromanipulation," Review of Scientific Instruments, v. 71 no.12, December 2000, pp4561-4570.
[Jackson62] J. D. Jackson, "Classical Electrodynamics," John Wiley \& Sons, New York, 1962.

Appendix A: Force on a soft magnetic bead in a magnetic field

NOTE: the original derivation was erroneous and is here corrected
According to [Jackson62], the magnetization induced in a permeable sphere by an applied external field \boldsymbol{B} is

$$
\begin{equation*}
\boldsymbol{M}=\frac{3}{4 \pi}\left(\frac{\mu-1}{\mu+2}\right) \boldsymbol{B} \tag{J:5.115}
\end{equation*}
$$

in Gaussian units. From Jackson's Appendix on Units and Dimensions, we convert to SI units according to $M \rightarrow M \sqrt{\mu_{0} / 4 \pi}, B \rightarrow B \sqrt{4 \pi / \mu_{0}}$, and $\mu \rightarrow \mu / \mu_{0}$, obtaining

$$
\begin{equation*}
\boldsymbol{M}=\frac{3}{\mu_{0}}\left(\frac{\mu_{r}-1}{\mu_{r}+2}\right) \boldsymbol{B} \tag{A.1}
\end{equation*}
$$

where $\mu_{r}=\mu / \mu_{0}$ is the relative permeability inside the sphere.
To obtain the magnetic dipole moment \boldsymbol{m} of the sphere, we integrate \boldsymbol{M} over its volume. Since the magnetization \boldsymbol{M} inside the sphere is uniform, the integral is simply the volume of the sphere times \boldsymbol{M}, or

$$
\begin{equation*}
\boldsymbol{m}=\frac{\pi d^{3}}{2 \mu_{0}}\left(\frac{\mu_{r}-1}{\mu_{r}+2}\right) \boldsymbol{B} \tag{A.2}
\end{equation*}
$$

Again from Jackson, the force on a magnetic moment \boldsymbol{m} in a magnetic field \boldsymbol{B} is,

$$
\begin{equation*}
\boldsymbol{F}=\nabla \times(\boldsymbol{B} \times \boldsymbol{m})=(\boldsymbol{m} \cdot \nabla) \boldsymbol{B}=\nabla(\boldsymbol{m} \cdot \boldsymbol{B}) \tag{J:5.69}
\end{equation*}
$$

Substituting eq(A.2) into eq(J: 5.69):

$$
\begin{equation*}
\boldsymbol{F}=\frac{\pi d^{3}}{2 \mu_{0}}\left(\frac{\mu_{r}-1}{\mu_{r}+2}\right) \nabla\left(B^{2}\right) . \tag{A.3}
\end{equation*}
$$

\dagger Equation numbers prefixed by "J:" are from [Jackson62].

Appendix B: Parametric simulations of monopole configurations

A parametric study of the monopole model was conducted with Matlab code. The model consists of a magnetic bead located at the origin, a "driven" monopole of strength Q on the z-axis at $z=z_{0}$, and n "return" monopoles of strength $-Q / n$ arranged equally spaced around a circle of radius r coaxial with z and located at $z=z_{c}$. For $n=3, r=0.9428, z_{c}=-z_{0} / 3$, this model represents an equilateral tetrahedral pole geometry.

Using the function Fcoax (), it was first determined that for $2 \leq n \leq 20$, the force was independent of n, demonstrating no advantage in force from a larger number of poles.

Example geometry, $n=5$

The function parametric() was then constructed to investigate the force behavior of non equilateral tetrahedra of the kind modeled. A plot of normalized force as a function of position $z c$ shows that the equilateral tetrahedron produces 89.8% of the maximum force, which occurs for a slightly elongated tetrahedron from equilateral.

Matlab codes are included next. Fcoax () is the function that calculates a single instance of the bead force. Parametric() makes a plot of bead force while varying z_{c}.

```
function F = Fcoax(Q, n, z0, r, zc, chi, a)
% Fcoax(Q, n, z0, r, zc, chi, a) -- Calculate the force on a bead of
% radius a and susceptibility chi at the origin exerted by n poles
% positioned coaxially about the z axis at z = zc, each with strength
% -Q/n, and one pole on the z axis at z = z0 with strength Q.
R = coax(z0, r, zc, n);
for i = 1:n
    q(i) = -Q/n;
end
q(n+1) = Q;
F = Fbead(q, R, chi, a);
```

```
function parametric(n)
% parametric(n) -- Calculate the force at the origin as zc is varied.
% Let the dominant pole be located at z0 = 1, and zc be the location
% of the center of a circle coaxial with z. Report the position zm
% of the maximum force Fm, and the percentage force 100*Ft/Fm at
% zt = -1/3 which represents an equilateral tetrahedron (circle radius
% of 0.9428). Generates a normalized plot of F(z) where "x" marks
% position of the main pole, and "o" marks the tetrahedral case.
n = 2*fix(n/2)+1; % ensure n is odd
s = 1;
D = 2;
z = linspace(s-D,s+D,n);
for i = 1:n
    F(i,:) = Fcoax(1, 3, s, 0.942809041582, z(i),1000,1.0e-7);
    if abs(z(i)-s) < D/(n-1)
        zs = i;
    end
    if abs(z(i)+s/3) < D/(n-1)
        zc = i;
    end
    if i == 1
        Fmax = F(i,1);
    else
        if F(i,1) > Fmax
            Fmax = F(i,1);
            imax = i;
            end
    end
end
plot(z, F(:,1)/Fmax, 'k',...
    z(zc),F(zc,1)/Fmax, 'ko',...
    z(zs), F(zs,1)/Fmax, 'kx');
xlabel('zc normalized to zO');
ylabel('Force normalized to Fmax');
text(z(zc)+0.1, F(zc,1)/Fmax, 'Equilateral case');
text(z(zs)+0.1, F(zs,1)/Fmax, 'z0');
zmax = z(imax)
percent = F(zc,1)/Fmax
```

```
function p = coax(z0, r, zc, n)
% coax(z0, r, zc, n) -- generate n points on a circle of radius r coaxial
% with z, located z = zc from the origin, and one point at [z0,0,0].
dphi = 2*pi/n;
for i = 1:n
    phi = i*dphi;
    p(i,:) = [zc, r*sin(phi), r*cos(phi)];
end
p(n+1,:) = [z0, 0, 0];
function F = Fbead(q, R, chi, a)
% Fbead(q, R, chi, a) -- Force on a spherical bead of susceptibility chi
% and radius a, located at the origin, exerted by magnetic poles of
% strengths q located at locations R.
B = sum(Bfield(q, R),1);
dB = sum(GradB(q, R),1);
F = (4*pi*a\hat{3}/3)*\operatorname{chi}*\operatorname{dot}(B, dB)*B/norm(B);
```

```
function B = Bfield(q, R)
% Bfield(q, R) -- N magnetic induction vectors B at the origin induced
% by N magnetic poles of strength q at locations R. [SI units]
% q is a 1:N list of pole strengths, R is an N:3 matrix of N vectors R.
if length(q) = length(R(:,1))
    error('Number of poles q inconsistent with number of locations R.');
end
for i = 1:length(R(:,1))
    B(i,:) = q(i)*R(i,:)/(4*pi*norm(R(i,:))\hat{3});
end
```

```
function Gb = Gradb(q, R)
% gradB(q, R) -- Gradient of scalar B-field strength b at the origin,
% contributed by a pole of scalar strength q at vector location R.
% [SI units]
% Notation:
% Let Du_v be the total derivative of u wrt v, and du_v be the partial
% derivative. Let w represent a scalar, W represent a vector, and W`
% represent a unit vector.
%
% The scalar Db_r is the magnitude of the gradient vector DB_r which
% points along the unit vector R. Thus the directional derivatives
% of b along the coordinate axes can be written,
% x**db_x = x*Db_r*dr_x, and similarly for y, and z.
% Thus, grad*b = Db_r*grad*r = Db_r*R/r.
% q is a 1:N list of pole strengths, R is an N:3 matrix of N vectors R.
if length(q) = length(R(:,1))
    error('Number of poles q inconsistent with number of locations R.');
end
for i = 1:length(q)
    r = norm(R(i,:));
    gradr = -R(i,:)/r; % Negative because direction is towards the origin.
    dbdr = -q(i)/(2*pi*r3̂);
    Gb(i,:) = dbdr*gradr;
end
```


Appendix C: Specification of the Magnets

This appendix contains the shop drawings specifying the materials and construction of the DC prototype magnet assembly.

To the best of my knowledge, the included drawing revisions are the current as-built prototype configuration. Please note the drawings are in units of [cm] - the choice seemed well motivated at the time, but after working with the instrument makers in the Physics Machine Shop, I think I'd do it in inches next time.

Cores and Bobbins -- 4 ea
Dimensions in cm.
Tolerances, except where noted otherwise --
Cores and Bobbins -- 4 ea
Dimensions in cm.
Tolerances, except where noted otherwise --
Tolerances, except where noted otherwise --
for dimensions shown to 2 places: $+/-0.01 \mathrm{c}$
for dimensions shown to 2 places: $+/-0.01 \mathrm{~cm}$,
for dimensions shown to 3 places: $+/-0.004 \mathrm{~cm}$.
Wind 14 full layers, (about
340 turns) of \#22AWG
formvar insulated magnet

 0
0
0
0
0

Core material ASTM A848 Type 1 Low Carbon Magnetic Iron. Protect from oxidation during fabrication, finish with blueing process (ferrous oxide) until visibly black, then lightly oil.

Bobbin material: phenolic composite.
Bobbin to core clearance nominally class RC7.

Magnetic cross pieces -- 4 ea.
Material is ASTM A848 Type 1 Low Carbon Magnetic Iron Dimensions in cm.

Tolerances, except where noted otherwise --
for dimensions shown to 3 places: $+/-0.004 \mathrm{~cm}$.
angular: +/- 0.1 degrees, but variation between pieces to be less than 0.01 degrees
Protect from oxidation during fabrication, finish with blueing process (ferrous oxide) until visibly black, then lightly oil.

Note 1: Hole drilling and threading operations to be precisely aligned.

Poles -- 4 ea.
Jam nuts -- 12ea
Dimensions in cm .
Tolerances: $+/-0.004 \mathrm{~cm}$.
Pole material is ASTM A848 Type 1 Low Carbon Magnetic Iron,
Pole threaded $1 / 4-28$ NF for 3 cm .
Pole uniformly tapered for 1.5 cm to a point not exceeding 0.005 cm diameter.
Protect pole from oxidation during fabrication, finish with blueing process
(ferrous oxide) until visibly black, then lightly oil.
Jam nut is $1 / 4-28$ NF.
Material is brass or non-magnetic stainless steel.

[^0]| | 1 | 1 |
| ---: | ---: | :--- |
| 1 | 1 | |
| 1 | 1 | |
| 1 | 1 | |
| | 1 | 1 |
| 1 | 1 | 1 |
| | 1 | 1 |
| | 1 | 1 |
| | 1 | 1 |
| | 1 | 1 |
| | 1 | 1 |
| | 1 | 1 |
| | 1 | 1 |

$$
-G^{\prime} L
$$

Appendix D: Specification of the Drive Electronics

This appendix contains the shop drawings specifying the parts and construction of the DC prototype magnet drive electronics. The drawings do not show the as-built ventilation holes in the top and bottom of the enclosure and rubber feet to provide bottom clearance. These were added to provide better cooling for the power supplies contained in the box.

If I were to design this again, I would forego the grounded-load circuit topology of the transconductance amplifiers. As built, even with significant debug effort, small oscillations in the MHz range still occur under certain operating conditions. While these do not apparently cause distortion of the transconductance gain at low frequencies, it is still not a desirable situation. My best guess is that floating the load (coil) and grounding the current sense resistor would provide a topology free of this problem. The cabling to the coils would support this topology without modification.

Coil driver transconductance amplifier, gain $=\mathbf{0 . 5}[\mathrm{A} / \mathrm{V}]$. (4ea)
Slew rate limit approx $1200[\mathrm{~A} / \mathrm{s}]$ for a $10[\mathrm{mH}]$ coil.
All resistors 1%, metal film; except for a $1[\Omega] 10[\mathrm{~W}]$ wire wound,
Dale RH-10 $1[\Omega] 1 \%$, Newark P/N 01 F 9597 . Dale RH-10 $1[\Omega] 1 \%$, Newark P/N $01 F 9597$.
All capacitors are X7R ceramic, $50[\mathrm{~V}]$ or equivalent.
All "ground" connections are to a common point close to the op amp
package, and connected closely to the heat sink.
National Semiconductor LM675T power op amp (TO-220 case) to be
insulated from heat sink by appropriate insulating washer and fastener.

Power supplies: Power One MAP110-1012. (2ea)
Adjust V1 to 15 [V]. Each supply rated at $15[\mathrm{~V}] / 8[\mathrm{~A}]$.
AC power harness mating with J1 uses Molex 09-50-3051-P shell
(Newark \#44F4483) with Molex 08-52-0072-C pins (Newark \#93F9690)
DC power harness mating with J2 uses Molex 09-50-3131-P shell
(Newark \#94F9664) with Molex 08-52-0072-C pins (Newark \#93F9690)

$$
\begin{aligned}
& \text { Drive electronics box. (} 1 \mathrm{ea} \text {) } \\
& \text { Two pieces to be folded and TIG welded to make up the box. }
\end{aligned}
$$

Pattern for drive electronics box. (2ea). Material: 0.064" 6061-0 Aluminum sheet.

 S!! प!!̣ рлеоq !!noג! mounting brackets is shown along with the current sense resistors and power Op Amps.

回 回 O O O O O O O O O回 回 回 回 回 回 回 回 回 O
 －－－－－－？回 回 回 回 回 잉ㅁㅁㅁㅁㅁㅁㅁ ㄱ 回 回 回 回

 O
 O
 O －- －－－－$刀$ 回 回 回 回 回 － －－ーーーー 回 O O O O O回 回 回 回 回 回 回 回 回回 O
 OQ O O O O O O O O O O O

MN	TITLE						
	3DFM						
	DESCRIPTION DC prototype drive electronics back panel assembly						
Drawn by Leandra Vicci	$\begin{gathered} \hline \text { SIZE } \\ \text { A } \end{gathered}$	dWG No			Driver 1.4		
DATE 30 March 2001		SCALE	1:2	REV	0	SHEET	12 OF 13

[^0]: Top Plate -- 1ea
 Dimensions in cm .
 Tolerances,
 for dimensions shown to 2 places: $+/-0.01 \mathrm{~cm}$,
 for dimensions shown to 3 places: $+/-0.004 \mathrm{~cm}$.
 Material: 1/8 inch 2024 Aluminum or equivalent
 Terminal blocks (not shown): Beau Interconnect, 4 pole,

