
Energy minimization techniques for real-time

scheduling on multiprocessor platforms �

Shelby Funky Jo�el Goossensz Sanjoy Baruahy

October 1, 2001

Abstract

The scheduling of systems of periodic tasks upon multiprocessor systems with pro-
cessors of di�ering speeds is considered. Computation speeds may di�er because the
system is comprised of di�erent types of processors | i.e. it may be a uniformmultipro-
cessor platform. Alternatively, the platform may be comprised of identical processors
with speeds that di�er because some processors may have their voltage levels reduced
in order to minimize energy consumption. Given a periodic task system, a condition
is derived for minimizing the computing capacity of the multiprocessor system while
ensuring all deadlines of the task system are met when scheduled using the earliest
deadline �rst (EDF) algorithm. A method of selecting the voltages of identical proces-
sors in order to meet this condition while minimizing the energy consumption is then
presented. The resulting system is a platform of identical processors with di�erent
computation rates on which the task set can be scheduled using EDF.

Keywords: Multiprocessor; energy minimization; variable voltage; scheduling; ear-
liest deadline �rst; periodic task system.

1 Introduction

Real-time problems may be divided into two basic categories: hard instances in which a job
must execute completely between its designated arrival time and deadline, and soft instances
in which the deadline may be missed under some conditions. Periodic tasks [8], sequences
of jobs that execute repeatedly over regular time intervals, have proven to be extremely
useful in describing real-time instances. The regularity of the periodic task instance allows
for easy and concise analysis of the schedulability of a set of tasks. In this paper, we will be
considering hard real-time instances consisting of both periodic tasks and (aperiodic) jobs.

Systems used to execute hard real-time instances must be designed to meet deadlines
even when the requirements of the instance are most taxing. Often, this is achieved by over-
provisioning system resources and much of the time the system is highly under-utilized. For

�Supported in part by the National Science Foundation (Grant Nos. CCR-9988327, and ITR-0082866).
yUniversity of North Carolina, Chapel Hill, North Carolina.
zUniversit�e Libre de Bruxelles, Brussels, Belgium.

1

this reason, analysts are often concerned with designing a system that will be guaranteed
to meet all deadlines of a real-time instance while minimizing required system resources.
The resources one chooses to minimize may vary depending on the focus of the problem.
System computing capacity and power consumption are both elements of a system which
are desirable to reduce as much as possible. System computing capacity is minimized to
reduce the purchase cost and possibly to remain within current design limitations. Power
consumption is minimized to reduce the energy usage (and therefore the operating cost)
of a system, and possibly to increase portability or reduce size | decreasing the power
requirement of a system may allow for a reduction in battery size or an increase in battery
life [13].

Processor speed can be modi�ed by altering the clock frequency (fclock below) or by
altering the voltage (Vdd below) [14]. The advantage of adjusting speed by adjusting voltage
rather than clock frequency is that power consumption is proportional to the square of the
voltage, whereas it is only linearly proportional to clock frequency. Furthermore, processor
speed is proportional to fclock and is nearly proportional to Vdd. For this reason, variable
voltage processors are becoming more common and are used in many portable devices and
other devices for which power consumption is a critical design issue [13].

In this paper, we introduce a method for minimizing the computing capacity of a system
while ensuring that a real-time instance will meet all its deadlines. We then explore how
to minimize the power consumption of a system with the speed constraints imposed by
the schedulability problem. We allow the designer the exibility of using a multiprocessor
platform | a platform consisting of several processors all of which may execute any jobs of
the real-time instance. We consider three types of multiprocessor platforms:

� In identical multiprocessors the rate of execution for a job is the same regardless of
which processor is currently executing the job | i.e., if a job runs for one time unit on
one processor and then runs for one time unit on another processor, the same amount
of work will be done in both cases. In this case, the speed of each processor is the same
and is generally assigned the value 1.

� In variable voltage identical multiprocessors all processors have identical param-
eters, but their speeds may vary due to di�erences in voltage levels. If all processors
are set to the same voltage level, they will all execute jobs at the same rate.

� In uniform multiprocessors the rate of execution for a job varies depending on
which processor is currently executing the job | if a job runs for one time unit on one
processor and then runs for one time unit on another processor, the amount of work
done may di�er. Uniform multiprocessors are represented by assigning a speed to each
processor: if a job executes on a processor with speed s for t time units, then s � t units
of work will be done.

In exploring the scheduling of hard real-time instances on multiprocessors, the following
system requirements are assumed:

� Job preemption is permitted. If a job of the real-time instance is executing, it
may be interrupted by another job. The job may then resume execution at the same

2

execution point, without any time penalty, whenever the system becomes available
again.

� Job migration is allowed. If a job is preempted while running on a processor, it
may resume execution on another processor, also without penalty.

� Job parallelism is not allowed. While a job may execute on two separate proces-
sors at di�erent points in time, it may not execute simultaneously on two separate
processors.

This research. In this paper, we study the following problem:

Given a multiprocessor platform with m identical variable voltage processors and a collec-
tion of periodic tasks,

Determine the voltages that should be supplied to the processors such that

� all the jobs of the periodic tasks will meet their deadlines using the EDF scheduling
algorithm, and

� energy consumption will be minimized.

Many real-time scheduling theorists have explored the problem of scheduling a real-time
instance on identical multiprocessors [1, 2, 11, 12]. The problem of scheduling real-time
instances on uniform multiprocessors is now beginning to be explored in detail [5].

2 Model

We wish to execute real-time job instances on uniform multiprocessors. A real-time instance
is either a set of jobs, J = fj1; : : : ; jng, or a set of periodic tasks, � = f�1; : : : ; �ng. Each
job ji 2 J is completely de�ned by the 3-tuple (ai; ci; di), where ai is the job's arrival time,
ci is its execution requirement, and di its deadline. Periodic task sets are essentially sets
of in�nitely repeating real-time jobs. They are represented by 2-tuples (ci; pi), where ci is
the execution requirement of each job and pi is its period: each job of this periodic task
has an arrival time of k � pi, an execution requirement of ci and a deadline of (k + 1) � pi for
some k = 0; 1; 2; : : : The utilization of a task measures the proportion of a processor it will

require. It is given by ui
def
= ci

pi
. Similarly, the total utilization of a task set measures the

proportion of a processor the entire set will require and is given by Un
def
=
Pn
i=1

ci
pi
.

We call J feasible if there exists some scheduling algorithm for which every job ji receives
ci units of execution in the time interval [ai; di). A periodic task set is feasible if for every
task �i and for every integer k � 0 the task �i receives ci units of execution in the time
interval [k � pi; (k + 1) � pi). In some cases, it may not be necessary to specify whether the
real-time instance under discussion is a job set or a task set | it could be either. We refer to
such instances by the symbol I, which is a (possibly in�nite) set of jobs Ij = (aj; cj; dj). If an
instance I is feasible on a multiprocessor platform � and A is an algorithm which schedules
I to meet all its deadlines, then we call I A-schedulable.

3

This paper focusses on determining processor speeds for variable voltage identical mul-
tiprocessors that will ensure EDF-schedulability and minimize energy usage. The EDF, or
\earliest deadline �rst," scheduling algorithm assigns jobs with earlier deadlines higher pri-
ority than those with later deadlines | if there are more jobs awaiting execution than there
are processors, the jobs with the earlier deadlines will be assigned to processors and those
with later deadlines will wait. Jobs with the same deadline are assigned priority arbitrarily,
but consistently (perhaps using job identi�cation to break such ties).

EDF is known to be an optimal scheduling algorithm in uniprocessor systems | a task
set � is feasible on a uniprocessor � if and only if it is EDF-schedulable on �. Unfortunately,
EDF is not optimal on multiprocessors since there are tasks sets that are feasible on some
multiprocessors but will miss deadlines if EDF is used [4]. There are nevertheless signi�cant
advantages to using EDF for scheduling on multiprocessor platforms. While it is beyond the
scope of this paper to describe in detail these advantages, some important ones are listed
below:

� Very eÆcient implementations of EDF have been designed (see, e.g., [10]).

� It can be shown that when a set of jobs is scheduled using EDF, then the total number
of preemptions is bounded from above by the number of jobs in the set.

� It can be similarly be shown that the total number of interprocessor migrations that
of individual jobs is bounded from above by the number of jobs.

On uniform multiprocessors, there are a variety of choices available regarding which
processor a job is assigned to. One possibility is to assume that higher priority jobs are
always assigned to faster processors. This property, called the work{conserving property,
implies that if a processor is idling then all processors with a slower speed are also idling. In
this paper, we assume that EDF employs the work{conserving property when scheduling real-
time instances on uniformmultiprocessors. This variation of EDF for uniformmultiprocessors
also has two other important properties:

� It is non-idling. A job that has not completed its execution requirement will never
be forced to wait for a processor while there is some processor that is not executing
any job.

� It is deterministic. The scheduling algorithm generates a unique schedule for any
given instance I.

It should be noted that if the work{conserving property is not assumed, EDF will not neces-
sary satisfy the deterministic property on uniform multiprocessors | if two jobs running on
di�erent speed processors were switched, the work{conserving property would be violated,
but all other properties of EDF would be satis�ed. EDF will satisfy the non-idling property
even if it is not assumed to be work conserving.

4

3 De�nitions

We begin this section with some basic notation used to describe a multiprocessor platform
�.

De�nition 1 (m(�); si(�); S(�); �(�)) Let � be an m-processor multiprocessor platform
with processor speeds s1; : : : ; sm, where si � si+1 for i = 1; : : : ; m � 1. The constants
m(�); si(�); S(�); and �(�) are de�ned as follows:

� m(�) denotes the number of processors in �: m(�)
def
= m.

� si(�) denotes the speed of the ith fastest processor of �: si(�)
def
= si.

� S(�) denotes �'s cumulative processing power: S(�)
def
=
Pm(�)
i=1 si(�).

� We de�ne an additional parameter �(�) as follows: �(�)
def
= max

m(�)
k=1

Pm(�)

i=k+1
si(�)

sk(�)
.

Intuitively, the parameter �(�) measures the degree of \identicalness" of � | the closer � is
to being an identical system, the larger the value of �(�). This value has an upper bound of
(m� 1), which occurs when � consists of m identical processors. Alternatively, �(�) can be
arbitrarily small when the processors have extremely di�erent speeds. For example, �(�) < �

for the m-processor platform where si+1(�) �
�
m
� si(�) for i = 1; : : : ; m� 1.

Note that the above de�nition implies that si(�) is non-increasing for any multipro-
cessor platform � | i.e., for all multiprocessor platforms �, si(�) � si+1(�) for all i =
1; : : : ; m(�) � 1.

The following de�nition provides a notation for indicating when an algorithm assigns
tasks of an instance to a speci�c processor.

De�nition 2 (Æ(A; si(�); I; t); Æ(A; si(�); Ik; t)) Let A be any deterministic scheduling al-
gorithm, � be any multiprocessor, and I any real-time instance. Then at any time t and for
any i = 1; : : : ; m(�), we have

Æ(A; si(�); I; t)
def
=

(
0 if si(�) is idling at time t when A schedules I on �
1 if some job is executing on si(�) at time t when A schedules I on �.

Similarly, to indicate whether a speci�c job of I is executing on a processor at a given time,
the following notation is used:

Æ(A; si(�); Ik; t)
def
=

(
0 if Ik does not execute on si(�) at time t when A schedules I on �
1 if Ik executes on si(�) at time t when A schedules I on �.

In order to determine whether a real-time instance is feasible using a particular algorithm,
the work done by the algorithm over time must be analyzed. The following notation is used
to denote this concept.

5

De�nition 3 (W (A; �; I; t);W (A; �; Ik; t)) Let � be any multiprocessor platform and let I
be any real-time instance. The notation W (A; �; I; t) denotes the work done by algorithm
A on instance I using multiprocessor platform � in the time t. More formally:

W (A; �; I; t)
def
=

m(�)X
i=1

si(�)
Z t

0
Æ(A; si(�); I; x)dx:

Similarly, the notation W (A; �; Ik; t) denotes the work done by algorithm A on the kth job
of I:

W (A; �; Ik; t)
def
=

m(�)X
i=1

si(�)
Z t

0
Æ(A; si(�); Ik; x)dx:

4 Uniform multiprocessor speeds for EDF-schedulability

Philips, Stein, Torng and Wein [12] explored in detail the idea of augmenting an identical
multiprocessor platform in order to ensure EDF-schedulability. They proved that if a given
real-time instance is feasible on a platform of m identical processors, then the same instance
is EDF-schedulable on m identical processors that are (2� 1

m
) times faster than the original

system. In a previous paper, we extended this result to uniform multiprocessors: Given that
a real-time instance is feasible on some uniform multiprocessor platform with m processors,
the system may be augmented to ensure EDF-schedulability on another (faster) m-processor
multiprocessor platform. We show below that the augmented platform need not be restricted
to having the same number of processors as the original system.

We begin by introducing a lower bound on the amount work done by a work{conserving
algorithm on an augmented system. This Lemma is a minor modi�cation of Lemma 1 in our
previous paper [5]. The modi�cation accounts for the the possibility that and � are not
necessarily comprised of the same number of processors. The proof is essentially the same
and is omitted from this paper.

Lemma 1 [5] Let I be any real-time instance. Let � and be two multiprocessor platforms.
Let A be any algorithm executing on � and let eA be any work{conserving algorithm executing
on . Assume the speeds of � and are related as follows:

S() � S(�) + �() � s1(�): (1)

Then at any time t � 0, the following condition holds:

W (eA; ; I; t) � W (A; �; I; t): (2)

Lemma 1 relates the total work done by two platforms under speci�c conditions. Unfortu-
nately, relating the total work does not necessarily provide enough information to guarantee
that I does not miss deadlines on using algorithm eA even if I is feasible on �. The fol-
lowing theorem uses the previous result to conclude that when the conditions of Lemma 1
hold, the real-time instance I will be EDF-schedulable on . While this theorem di�ers from
Theorem 1 of [5] in that � and do not necessarily have the same number of processors,
the proof is exactly the same. The reader is encouraged to consult that paper for the proof.

6

Theorem 2 [5] Let I be a real-time instance that is feasible on multiprocessor platform �

using algorithm A. Let be another multiprocessor platform. If the following condition
holds

S() � S(�) + �() � s1(�) (3)

then I is feasible on using the EDF scheduling algorithm.

While Theorem 2 provides conditions under which instance I is EDF-schedulable, a plat-
form � on which I is feasible must be provided in order for the theorem to be useful. The
following corollary provides such a platform for any task set � and therefore provides more
general conditions under which � is feasible on .

Corollary 3 Let � be a set of n real-time tasks with utilizations u1; : : : ; un, where u1 =
maxni=1 ui and Un =

Pn
i=1 ui. Let be a multiprocessor platform that satis�es the following

property:
S() � Un + �() � u1: (4)

Then � is EDF-schedulable on .

Proof. Let � be the n-processor multiprocessor platform with si(�) = ui. Schedule � on �
by executing each task �i of � on processor si(�) of �. Using this algorithm, all deadlines of
� are met on �. Note that s1(�) = u1 and S(�) = Un. Therefore, Inequality 4 holds and �
is feasible on , the result follows from Theorem 2.

Inequality 4 gives a suÆcient condition to ensure EDF-schedulability, but not a necessary
one: there are task sets which are EDF-schedulable on platforms with cumulative speed
smaller than �() � u1 + Un. In fact, if � = f(1; 1); (1; 1)g it can be scheduled on a platform
 consisting of 2 unit-speed processors. In this case �() = 1. Therefore, �() � u1 + Un =
1 � 1 + 2 = 3 so Inequality 4 is clearly violated. However, the bound is a tight one: in some
cases violating this bound by even a small amount can result in a system on which I is not
EDF-schedulable, as the following theorem shows.

Theorem 4 There exists a periodic task set � = f�1; : : : ; �ng and a multiprocessor platform
 and with cumulative speed given by

S() = �() � u1 + Un � � (5)

(where � is some arbitrarily small positive number) such that � is not feasible on .

Proof. Let � = f(1; 1); (1; 1)g and let �
def
= �

2
. Consider the platform consisting of two

processors with speeds 2��
1+�

and ��(2��)
1+�

. Since the cumulative speed of is (2 � �), will

provide less capacity in the interval [0; 1) than the 2 units required by � . Therefore at least
one of the tasks of � must miss its �rst deadline. Note that

�() � u1 + Un � � = � + 2� � =
�

2
+ 2� � = 2� � = S():

Therefore Equation 5 is satis�ed.

7

5 Energy minimization

The previous section provides a method for verifying whether can be used to schedule
a periodic task set using an EDF scheduler. In this section, we will determine the speed
settings for that will minimize energy usage E(). For each processor of , the energy
usage is the integral of the power consumption over time [14]:

E
def
=
Z
Pdt:

The power consumption of each processor is given1 by the following equation [15]:

P = �CLV
2
ddfclock; (6)

where � is the switching activity, CL the load capacitance, Vdd the voltage and fclock is the
clock frequency. The processor speed is also a function of fclock, Vdd and CL:

S =
fclock

kCL
�
(Vdd � VT)

2

Vdd
; (7)

where VT is the threshold voltage, k is a constant. Note that if setting the processor speed
is achieved by reducing the voltage, there would be a resulting quadratic gain in power.
By contrast, if speed were set by adjusting the clock frequency, the power gain would be
linear. In this section, we introduce a method for �nding m voltage settings, Vdd1 ; : : : ; Vddm ,
so that a given periodic task set � will be EDF-feasible on m processors and the total power
consumption will be minimized.

We assume that we are setting the voltage levels form identical variable voltage processors
| i.e., the values of the switching activity (�), the load capacitance (CL), the clock frequency
(fclock), the threshold voltage (VT) and the constant k in Equation 7 are the same for all
m processors of the platform. We vary processor speed by setting the voltages to di�erent
levels.

Notice that once the voltage levels are determined, they remain static | i.e. Equation 6
remains constant. Therefore, in this context minimizing energy usage is equivalent to mini-
mizing the power consumption. From this point forward, we will discuss power minimization
with the understanding that minimizing power consumption also minimizes energy usage.

We wish to minimize Equation 6, the power equation, subject to a number of constraints.
Firstly, we must ensure that the speeds are non-increasing and not smaller than VT , giving
the following linear constraints:

Vdd1 � Vdd2 � : : : � Vddm � VT : (8)

Furthermore, we need to apply a non-linear constraint on the total speed to ensure that
S() � �() � u1 + Un. This constraint is not straightforward and requires more in-depth
analysis. The complication arises primarily because of the �() term in the speed constraint.

1We restrict our study to a simple but popular \electrical" model, we believe that this model is realistic
and that our method is not restricted to that model and can be adapted to more sophisticated one (if
needed).

8

Recall that �() = max
m()�1
k=1

Pm()

j=k+1
sj()

sk()
. In the case of two processors, the maximum

must occur when k = 1 (since that is the only possible value for k), thus �() = s2()
s1()

. For

a value of m() larger than 2, the index k that is used to evaluate �() cannot be known
unless the processor speeds are known. Since we are trying to solve for the speeds that
optimize energy consumption, the solution to the optimization varies depends on the value
of k that we use. Consequently, we solve this problem (m() � 1) times | once for each
possible value of k | and select the solution that gives the smallest power consumption.

The following equation is the speed constraint for m() processors for a given value of k:

m()X
j=k+1

(Vddj � VT)

2

Vddj

!
�

Vddk
(Vddk � VT)2

� u1 + Un � kS �

mX
i=1

(Vddi � VT)
2

Vddi

!
� 0; (9)

where kS
def
= fclock

kCL
. In addition, for the given value of k, we must ensure that �() is the

maximum of all possible �() values. This adds another m()� 2 nonlinear constraints:

m()X
j=i+1

(Vddj � VT)

2

Vddj

!
�

Vddi
(Vddi � VT)2

�
mX

j=k+1

(Vddj � VT)

2

Vddj

!
�

Vddk
(Vddk � VT)2

� 0 (10)

for each 1 � i < m where i 6= k.
In summary, we wish to minimize Equation 6 subject to the non-linear constraints 9,

10 and the linear constraint 8. This is an optimization problem with a quadratic objective
function and non-linear constraint functions. The operations research literature gives a large
panel of solutions to this problem including the Sequential Quadratic Programming (SQP)
method. We shall not give details here, it is not the subject of this paper (see for instance [6]
for details). To resume, we solve m()� 1 optimization problems within a loop as follows:

Psav =1
for k = 1 to m()� 1

[P; ~V] = opt(k)
if P < Psav then

[Psav; ~Vsav] = [P; ~V]
next

return [Psav; ~Vsav]

where opt(k) is an SQP function that minimizes Equation 6 subject to constraints 8, 9, and 10

for each index k. The minimal power consumption (P) and the associated voltage (~V)
are returned by opt on each iteration. The overall minimum power consumption (Psav)

determines the voltage levels that are selected (~Vsav).

6 Evaluation

In this section, we introduce experimental results. We executed the optimization technique
described above on randomly generated task sets. The optimizations were done for 4 proces-
sors and for 8 processors. In all cases, we assume the system parameters have the following

9

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

E
ne

rg
y

sa
vi

ng
s

Un

4 processors
8 processors

Figure 1: Energy savings for uniprocessors systems.

values (which are within normal ranges):

� = 0:3, CL = 1 �F, fclock = 450 MHz, VT = 0:5 V, kS = 0:3667:

For this method, we only need to determine the utilization, u1, of task �1 with the heaviest
utilization, and the aggregate task set utilization Un. The value u1 is set to a random number
in the range (0:0; 1:0). In determining the value of Un, half of the values are initialized in
the range (u1; m � u1) and half in the range (m � u1;1). We compared the results to the
power consumption of uniprocessors as well as identical multiprocessors.

The speed of each uniprocessor was set to Un since any task set is EDF-schedulable if its
utilization is at most 1 [8]. To �nd the identical multiprocessor speed settings we employ
Corollary 3 of this paper. By this corollary, the randomly generated task set will be EDF-
schedulable on any multiprocessor if S() � Un + �() � u1. Since we want to be an
identical multiprocessor, the value of �() is clearly m � 1. Therefore the speed of each

processor is set to Un+(m�1)�u1
m

. Once the speed is determined, the voltage levels can easily
be found using Equation 7. These levels are then used to determine the power consumption
of the constructed uniprocessor and identical multiprocessor systems. Power savings are
calculated the �nding the di�erence between the power usage of the constructed systems
and the variable voltage system and then dividing this di�erence by power consumption of
the constructed systems | i.e., we calculate the savings of the variable voltage systems
relative to the constructed systems. Recall that since the processor speeds are constant, the
savings in power are equivalent to the energy savings.

We note that since the SQP method �nds a local minimum, runs executed with di�erent
starting points may result in di�erent power consumption levels. This is similar to the way
that Newton's method may give di�erent results when di�erent starting points are provided.
For these experiments, the same problem was submitted with various starting points and
the result with the lowest power consumption was selected.

Figure 1 illustrates the energy savings of the variable voltage system compared to unipro-
cessor systems. When the value of Un is small, the uniprocessors consume signi�cantly less
energy. This is because small levels of voltage consume a disproportionate amount of energy
| in the most extreme case, when Vdd = VT the processor has a speed of 0 while it is still
consuming energy. For task sets that have a very small total utilization, uniprocessors would
be preferable to variable voltage multiprocessors from an energy conservation point of view.

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

E
ne

rg
y

sa
vi

ng
s

Un/u1

4 processors
8 processors

Figure 2: Energy savings for identical multiprocessors systems.

However, when the total utilization increases, the use of variable voltage multiprocessors can
conserve a signi�cant amount of energy. As the speeds increase, the voltage levels get large
enough that Equation 7 is closer to linear. This allows the quadratic savings in the power
equation to be more e�ectively exploited.

Figure 2 illustrates the energy savings of an m-processor variable voltage system as
compared to an identical multiprocessor system, also comprised ofm processors. In this case,
the savings correlate with the ratio of the total utilization, Un, to the heaviest utilization, u1.
We then normalized this ratio by the number of processors, m. When Un is dominated by
u1, the variable voltage system consumes much less energy than the identical multiprocessor
system. Note that the fastest processor must have a speed of at least u1. Otherwise �1 will not
be able to meet its deadline even if it executes on the fastest processor continually. Therefore,
if the utilization of �1 is a very large proportion of the total utilization, the processor speeds
may be highly variable. As the total utilization becomes signi�cantly larger in relation to u1,
the power consumption approaches the consumption of the identical system. In this case, the
power consumption can be reduced by evenly distributing the system speed. By Equation 6,
power consumption is a constant times the sum of the squares of the voltages. Given that
the sum of squares is minimized when values are identical, the power consumption of the
system may be reduced when the voltages (and therefore the speeds) approach equality. Of
course, in this case the value of � is m � 1, its maximum possible value, and so using an
identical system is only bene�cial when u1 is small relative to Un.

These results demonstrate that, under certain circumstances, the variable voltage method
described in this paper can result in signi�cant energy savings.

7 Future Work

We are particularly interested in two speci�c areas of exploration based on the results of
this paper. First, while we have minimized power consumption for static voltage settings,
there could be more savings gained if we take advantage of dynamic-voltage processors. The
problem of scheduling of periodic task sets on dynamic-voltage uniprocessors has already
been considered [7, 9, 3]. We wish to extend those results to dynamic-voltage multiprocessors
using techniques considered in this paper.

Second, we note that assuming EDF satis�es the work-conserving property on uniform

11

multiprocessors could result in a large number of job migrations. We would like to �nd
a similar result for an another version of EDF that does not assume the work-conserving
property (perhaps considering a less stringent property instead) that may require fewer job
migrations. Furthermore, it seems that a faster system would require fewer migrations.
We would like to explore in more detail the relationship between system speed and job
migrations.

8 Conclusion

Real-time task sets can often require a system to be over-provisioned in order to ensure that
all deadlines are met. This is especially true for hard real-time systems, where missing a
deadline may result in catastrophic results. In this case, systems must remain stable even
when the task set is in its most demanding state. If the worst case occurs infrequently the
system is often under-utilized and may consume more energy than necessary. Therefore, it
is bene�cial to consider the energy usage of a system in the design, while still ensuring that
the task set will meet all deadlines.

The advent of variable voltage processors allows the designer to have more control over the
energy consumption of the system. In this paper, we have introduced a method of employing
variable voltage processors in system design to ensure EDF-schedulability of periodic task sets
while reducing power consumption. We have shown that for certain task sets this method
can conserve a considerable amount of energy as compared to uniprocessors and identical
multiprocessors.

References

[1] Anderson, J., and Srinivasan, A. Early release fair scheduling. In Proceedings of the Eu-
roMicro Conference on Real-Time Systems (Stockholm, Sweden, June 2000), IEEE Computer
Society Press, pp. 35{43.

[2] Aydin, H., Mejia-Alvarez, P., Melhem, R., and Mosse, D. Optimal reward-based
scheduling of periodic real-time tasks. In Proceedings of the Real-Time Systems Symposium

(Phoenix, AZ, December 1999), IEEE Computer Society Press.

[3] Aydin, H., Melhem, R., Mosse, D., and Meh�ia-Alverez, P. Determining optimal
processor speeds for periodic real-time tasks with di�erent power characteristics. In Proceedings
of the 13th Euromicro Conference on Real-Time Systems (June 2001).

[4] Dhall, S. K., and Liu, C. L. On a real-time scheduling problem. Operations Research 26

(1978), 127{140.

[5] Funk, S., Goossens, J., and Baruah, S. On-line scheduling on uniform multiprocessors.
In Proceedings of the 22nd Real-Time Systems Symposium (London, England, December 2001),
IEEE Computer Society Press.

[6] Gill, P. E., Murray, W., and Wright, M. H. Practical Optimization. Academic Press,
London, 1981.

12

[7] Hong, I., Qu, G., Potkonjak, M., and Srivastava, M. Synthesis techniques for low-
power hard real-time systems on variable-voltage processors. In Proceedings of the 19th Real-
Time Systems Symposium (Madrid, Spain, December 1998), IEEE Computer Society Press,
pp. 178{187.

[8] Liu, C., and Layland, J. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM 20, 1 (1973), 46{61.

[9] Manzak, A., and Chakrabarti, C. Variable voltage task scheduling for minimizing energy
or minimizing power. In IEEE International Conference on Acoustic, Speech, and Signal

Processing (ICASSP'00) (June 2000), pp. 3239 {3242.

[10] Mok, A. Task management techniques for enforcing ED scheduling on a periodic task set. In
Proc. 5th IEEE Workshop on Real-Time Software and Operating Systems (Washington D.C.,
May 1988), pp. 42{46.

[11] Mok, A. K. Fundamental Design Problems of Distributed Systems for The Hard-Real-Time

Environment. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, 1983. Available as Technical Report No. MIT/LCS/TR-297.

[12] Phillips, C. A., Stein, C., Torng, E., and Wein, J. Optimal time-critical scheduling
via resource augmentation. In Proceedings of the Twenty-Ninth Annual ACM Symposium on

Theory of Computing (El Paso, Texas, 4{6 May 1997), pp. 140{149.

[13] Pouwelse, J., Langendoen, K., and Sips, H. Energy priority scheduling for variable
voltage processors. In Int. Symposium on Low Power Electronics and Design (ISLPED'01)

(Huntington Beach, CA, August 2001).

[14] Yao, F., Demers, A., and Shenker, S. A scheduling model for reduced CPU energy. 36th
IEEE Symposium on Foundations of Computer Science (Oct. 1995), 374{382.

[15] You, Y.-P., Lee, C., Lee, J.-K., and Shih, W.-K. Real-time task scheduling for dynam-
ically variable voltage processors. In IEEE Workshop on Power Management for Real-Time

and Embedded Systems (May 2001), pp. 5{10.

13

