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1 Introduction

Finding the mean (average) of n arbitrary 3D rotations or orientations is conceptually
challenging both in its algebra and its geometric interpretation. To my knowledge, no
solutions have been found for the general case, although a number of approximate solu-
tions have been proposed [3, 4, 5] to accurately and e�ciently handle those limiting cases
typical of engineering interest. This report proposes an exact, closed form solution which
is extended from the 2D complex number domain where the averaging methods are widely
accepted.

Representing rotations as rotation (unit) quaternions [1] is convenient in that a ro-
tation composed of a sequence of successive rotations can be simply represented as the
(non-commutative) product of the successive rotation quaternions. But this very property
is problematical for averaging.

A mean average is conventionally taken as a sum of averagands divided by their
number. If applied to rotation quaternions however, the result is not in general a rotation
quaternion; moreover, there is no sensible geometric interpretation of such a procedure.
The multiplicative analogue of this procedure, taking the nth root of the product of rotation
quaternions does return a rotation quaternion. However the result is dependent on the
order of multiplication, while a meaningful average should be order independent.

This report explores the extension of rotations by unit complex numbers in the com-
plex plane to rotations by unit quaternions in 3-space. Unit complex numbers u = ei� form
a proper subspace of the rotation quaternions. Multiplication of any complex number z
by u will yield a number z0 with identical magnitude, rotated by an angle � about the
origin in the complex plane. Analogous to quaternion rotations, a complex rotation may
be composed of a product (commutative in this case) of successive rotations. In averaging,
the commutative property of complex multiplication provides a unique result, the principal
nth root of which does indeed geometrically represent the average rotation. Mapped into
logarithmic space, the averaging procedure becomes the conventional sum of averagands
divided by their number. We'll show how this logarithmic mapping can be extended from
complex to quaternion space, where the summation remains commutative, thus satisfying
the order independence requirement for averaging.

Distinct from rotations are orientations which pose an additional set of problems,
which we shall discuss in the second half of this report.

We shall use notational representations of, e.g., r for real or complex numbers, v for
vectors, v̂ for unit vectors and Q for quaternions. This notation notwithstanding, it should
be understood that all these quantities should be regarded as equivalent to their quaternion
form.
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2 Review of rotations in the complex plane
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Figure 1: A complex rotation

Let us introduce the rotation of a general com-
plex number z = x+i y by a unit magnitude complex
number, which without loss of generality can be rep-
resented as u = cos� + i sin�, and which we shall
call a rotation complex.

Consider the complex product z0 = uz = zu =�
x cos��y sin�

�
+ i
�
x sin�+y cos�

�
which repre-

sents a counterclockwise (CCW) rotation of z by an
angle � about the origin (�gure 1).

Since ei� = cos� + i sin� = u, we may write
log u = i�, which we shall call a rotation imaginary.

A succession of rotations (u1; u2; � � �) may be composed to produce the result z0 =

(� � � ((z u1)u2) � � � uN ) = z
QN
n=1(un), representing a rotation of z to the state after the

last of the successive rotations. In complex logarithmic space, the corresponding result is
log z0 = log z + i

PN
n=1(�n).

One could imagine calculating a mean average of N rotations by applying them suc-
cessively as just described, then appropriately decimating the result by N . For rotation

complexes, uavg =
�QN

n=1 un

�1=N
; for rotation imaginaries, �avg =

�PN
n=1 �n

�
=n.

A �ne point in geometric interpretation should be appreciated here. Composing a
�nal rotation from a succession of individual rotations implies the rotations occur in a
particular order which may be signi�cant to the result. A set of rotations to be averaged,
however, does not involve any notion of succession, so the result should be independent of
the order in which the rotations are considered.

Algebraicly, this means whatever operation is used to aggregate the individual rota-
tions for averaging must be commutative. In the complex number domain, both addition
and multiplication are commutative so averaging either rotational complexes or rotational
imaginaries as described above could be valid.

On the other hand, a composite rotation may depend on the inherent order in which
the rotations occur. For 2D rotations this is not the case, consistent with commutativity
of complex multiplication. But looking ahead to 3D rotations, the order in which rotations
are composed is de�nitely signi�cant, suggesting non-commutative rotation operators.

The reader is encouraged to try composing two simple 3D rotations, each by a quarter
turn or �=2 radians about x̂ and ẑ respectively. If the �rst rotation is about x̂ and the
second is about ẑ, the coordinate frame is transformed as [x; y; z] 7! [y; z; x], but if the
order is reversed, the transformation is [x; y; z] 7! [z;�x;�y].

3 Quaternions as 3D rotation operators

Quaternions are hypercomplex numbers (which comprise the reals, complexes, quater-
nions, and Cayley numbers), and thus share many of the properties of the complexes. In
particular, they work well for representing 3D rotations, and we shall see how they may
be used to obtain rotational averages.
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3.1 De�nition and basic properties of quaternions

The quaternion Q = [w; x; y; z] represents a 4-variate polynomial 1�w+i�x+j �y+k �z,
where the symbolic coe�cients i; j; k have the following properties of both vector cross
products and complex multiplication,

ij = k; ji = �k;
jk = i; kj = �i;
ki = j; ik = �j;

i2 = �1; j2 = �1; k2 = �1:

Accordingly, i; j; k represent three mutually orthogonal unit vectors î; ĵ; k̂ respectively, and
the quaternion [0; x; y; z] represents a 3-vector (îx + ĵy + k̂z). Moreover, i; j; k each also
represents a complex quantity

p�1, and the quaternions [w; x; 0; 0]; [w; 0; y; 0]; [w; 0; 0; z]
represent three orthogonal spaces of complex numbers. Other de�nitions are,

Q = [w;�x;�y;�z];Conjugate:

jQj =
q
QQ =

q
QQ =

p
w2 + x2 + y2 + z2:Norm:

The following quaternion properties are proved in [1],

Addition: Q+ P = P +Q; Q+ (P +R) = (Q + P ) +R;

Distributive: P (Q+R) = PQ+ PR; (P +Q)R = PR +QR;

Multiplication: zQ = Qz; QP 6= PQ; QP = P Q; Q(PR) = (QP )R;

Unit quaternion: jU j = 1; UU = 1 ) U = U�1:

3.2 Rotations by purely complex quaternions

We de�ne purely complex quaternions to be Qx = [w; x; 0; 0]. The algebra of Qx is
isomorphic with the algebra of complex numbers. Thus we may rely on the properties of
complex numbers for all operations on Q 2 Qx.

Let U = [cos�; sin�; 0; 0]. Clearly U 2 Qx and jU j = 1, i.e., it is a purely complex
unit quaternion. Let Q = [w; x; y; z] be an arbitrary quaternion which we may write as
Q = Qk + Q?, where Qk = [w; x; 0; 0] 2 Qx and Q? = [0; 0; y; z] ? Qx. More precisely,
their vector components are parallel and perpendicular, respectively.

Then UQ = U(Qk +Q?) = UQk +UQ?. Since [U;Qk] 2 Qx, the �rst term is simply
a rotation of Qk by an angle � in the complex wx plane. Expanding the second term
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UQ? = [0; 0; y cos� � z sin�; y sin� + z cos�], we �nd a formally similar rotation of Q?
by an angle � in the yz plane.

Similarly, QU = (Qk +Q?)U = QkU +Q?U . In this case, QkU 7! qu� = u�q in the
corresponding complex algebra, where the complex conjugate u� represents a rotation of
q by an angle of ��. Thus, QkU represents a rotation of Qk by an angle of �� in the

wx plane. However expanding Q?U = [0; 0; y cos� � z sin�; y sin� + z cos�], we �nd it
represents a rotation of Q? by angle +� in the yz plane.

We may compose these products (UQ)U = UQU to de�ne a rotation operator,
R(Q;U) = UQU; which rotates any quaternion Q by an angle 2� about U . In partic-
ular, the y and z components of Q are rotated about x̂ (in the yz plane), while the w and
x components are left invariant. The vector V = [0; x; y; z] is just a subspace of Q and is
rotated in the same manner about U .

Note that from the symmetry in de�nition of quaternions, everything we showed here
for U 2 Qx applies equally for U 2 Qy = [w; 0; y; 0] and U 2 Qz = [w; 0; 0; z]; that is, the
classes Ux; Uy; Uz, are all purely complex unit quaternions. Accordingly, we can write,

R(Q;Ux) = UxQUx; Ux = [cos�; sin�; 0; 0];

R(Q;Uy) = UyQUy; Uy = [cos�; 0; sin�; 0];

R(Q;Uz) = UzQU z; Uz = [cos�; 0; 0; sin�];

where R rotates Q by an angle 2� about Uk, k = x; y; z.

3.3 Rotations by any unit quaternion

Let us now extend these results to rotations by any unit quaternion, which can be
represented as U = [cos(�); û sin(�)] � [cos(�); x sin(�); y sin(�); z sin(�)], where û is an
arbitrary unit vector, and x2 + y2 + z2 = 1.

Consider two rotations, Ux k x̂ and Uz k ẑ, which we apply sequentially to U . Let us
pick Ux such that U 7! U 0 is rotated into the xy plane, i.e., u0z = 0; and pick Uz such
that U 0 7! U 00 is rotated into the xz plane, i.e., u00y = 0. Now U 00 k x̂ and is therefore
a pure complex quaternion, as are Ux and Uy by hypothesis. Formally we write, U 00 =
Uz(UxUUx)U z = UzUxUUxUz. Multiplying both sides on the left by UxU z and on the
right by UzUx we obtain UxU zU 00UzUx = UxU z(UzUxUUxU z)UzUx = U , showing that U
can be composed from three purely complex unit quaternions.

We may therefore write the geometric operation

R(Q;U); U = [cos�; û sin�];

which rotates Q about U by an angle 2�, where R(Q;U) = R(R(R(Q;U 00 ); U z); Ux).

4 Averaging 3D rotations with quaternions

Notice that the composition of R(Q;U) in the last section is order dependent both
in its notation and in its algebra. As pointed out in the 2D case, there is no notion of
order in averaging, so trying to average, for example, Ux, Uz, and U 00 multiplicatively
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would be nonsensical. It is easy to prove that multiplicative averaging of U1 : : : Un works
if û1 = û2 = : : : ûn, but that is not very general; in fact it is the 2D case in the plane
normal to û1.

Instead, let us attempt to extend the 2D averaging of rotations in logarithmic space.
But �rst we must have de�nitions for quaternion logarithms loge(Q) and exponentials eQ,
and understand their properties. We shall approach this task using power series expansions
for sines, cosines, and the exponential function.

In preparation, we establish the properties of integer powers of unit vector quaternions.
By simple component wise multiplication of two vector quaternions P = [0;p] and Q =
[0;q] it is easily shown that PQ = pq = �p � q + p � q, where the product pq indicates
quaternion multiplication of the vectors while p � q and p � q represent the conventional
vector dot and cross products respectively.

Let us represent an arbitrary unit vector quaternion in the vector notation û, while
recalling that the product ûû represents quaternion multiplication. Thus û2 = ûû =
�û � û = �1: Clearly then, û3 = �û; and û4 = 1: By de�nition, û0 = 1, and in general,
ûn = ûn�4; n > 3:

4.1 Exponentials of quaternions

Let us derive an expression for the exponential of a general quaternion Q = � + û�;
where � and � are real numbers, and û is a unit vector quaternion.

eQ = e(�+û�) = e� � eû� = e�
1X
�=0

(û�)�

�!

= e�
��0
0!

+
û�1

1!
� �2

2!
� û�3

3!
+
�4

4!
+

û�5

5!
� � � �

�

= e�

0
BBB@

�0

0!
� �2

2!
+
�4

4!
� � � �+

û�1

1!
� û�3

3!
+

û�5

5!
� � � �

1
CCCA = e�

�
cos�+ û sin�

�

4.2 Logarithms of quaternions

In general, we can write P = jP jU , where jP j is a magnitude and U is a unit quater-
nion. Moreover, without loss of generality, we can let jP j = e� and U = cos(�) + ûsin(�),
where � and � are real numbers, and û is a unit vector. Let us de�ne Q = log(P ) to be
the inverse of the exponential function eQ = P , whence by inspection,

logP = �+ û�; where

� = log jP j;
û = Uv=jUvj;
� = tan�1(jUvj=Ur); and

Ur; Uv = the real and vector parts of U = P=jP j:
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Notice that the expression û� doubly covers the space R3, so the convention � � 0 may be
imposed without loss of generality. This convention is convenient in using � to represent
the geometric length of a vector pointing in the û direction.

4.3 Relevant properties of exponentials and logarithms

Consider if e(P+Q)
?
= eP eQ = e�p

�
cos�p+ûp sin�p

�
e�q
�
cos�q+ûq sin�q

�
. Expanding

the right hand side, one term is ûp sin�pûq sin�q which is commutative i� ûpkûq or
sin�p = 0 or sin�q = 0. But e(P+Q) is unconditionally commutative, so equality is only
possible if ûp k ûq or if P or Q or both are scalar. In general, e(P+Q) 6= eP eQ. Substituting
P = logR and Q = logS and taking the log of both sides of the inequality proves in general
log(RS) 6= logR+ logS. Thus one of the most useful properties of logarithms is sacri�ced
in the extension from complex to quaternion domain.

Nevertheless, perfectly valid transformations to and from logarithmic space can be
performed on quaternions. More important, the commutativity of addition in logarithmic
space has been shown to be decoupled from the corresponding non-commutative multi-
plication in linear quaternion space. This property enables us to consider logarithmic
quaternion space as an excellent candidate domain for averaging general rotations.

4.4 Averaging in 3D logarithmic space

A rotation quaternion U is of unit magnitude, i.e., (e� = 1) ) (� = 0), therefore
its logarithm degenerates to logU = û�: This is simply a vector of length � in the û

direction in a linear 3-space. Let us call this a rotation vector. Adopting the convention
that 0 � � � 1, i.e., representing all instances of �(û�) as (�û)�, gives us a single valued
representation of any rotation vector which is unbounded in wrap number.

We now have a formal mapping between rotation quaternions and rotation vectorsy.
We have also established a correspondence between rotation quaternions and geometric
3-space rotations. This provides us a geometric interpretation for a rotation vector: �û
represents a rotation by angle 2� about û.

Averaging in this space is appealing in that it is a straightforward procedure of linear
operations just as it is for scalars and 3D position vectors. Moreover any case which
degenerates to rotations in a unique 2D plane becomes isomorphic with well understood
averaging methods in the complex domain.

Therefore we have demonstrated an exact, formally consistent method for calculating
an average Ua of N rotation quaternions Un:

vn = logUn;

va =
1

N

NX
n=1

vn;

Ua = eva :

y Note: the exponential mapping is actually many to one which complicates matters, but
which may be addressed with suitable bookkeeping, and will not be discussed here. The
same problem exists in the 2D complex domain.
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5 Averaging 3-space orientations

Let us take an orientation to be a quanti�cation of angular pose in space. This di�ers
from a rotation, which implies an action taking an initial orientation to a rotated one.
At �rst glance, it seems their geometrical interpretations should possess identical formal
properties in whatever algebra is used to represent them. But some simple examples should
serve to illustrate a fundamental distinction.

5.1 A distinction between rotation and orientation in 2D

To represent a 2D plane in polar form, we are obliged to pick a branch line at some
particular angle, say �b = � radians. Let us now choose two orientations sensibly displaced
CW and CCW respectively from �b by some angle � < �=2. As quanti�ed in this space,
these orientations are, O1 = (� � �), and O2 = (�� + �). Also consider the rotations
R1 = (� � �) and R2 = (�� + �) representing actions taking � = 0 ! O1 and 0 ! O2

respectively.

Y

X

O1

O2

Oavg

Orientation

Y

X

R1

R2

Ravg

Rotation

Fig 2: Average orientation differs from average rotation

According to the procedure for averaging rotations, their average is (R1 +R2)=2 = 0,
which makes intuitive sense in terms of the actions represented. But this is not what we
had in mind for the average of the orientations. An average of � is the sensibly intuitive
one we would prefer.

Another example is three orientations of �2�=3; 0; 2�=3, respectively. The corre-
sponding rotations average to 0, but the three way symmetry in this case gives three
equally valid candidate average orientations.

5.2 Statement of the problem

Even in the 2D case, averaging orientations incurs complications which arise from
existence of branch lines in the geometric representation of orientations. It makes sense to
consider rotations with unbounded wrap number, e.g., � is distinct from 24� + � which is
12 entire turns more than �. But both corresponding orientations are sensibly measurable
as equal to �, normally chosen to be in the principal branch. In the above example, this
branch is �� < � � �.

Thus there are two distinct parts of this problem. The �rst is to �nd an acceptable
de�nition of what we mean by average orientations in 2D, and to �nd a procedure whereby
we can calculate them. The other is to �nd a suitable algebraic extension of the 2D
de�nition to the 3D case.
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Naturally, we would like to test our hypothetical de�nitions and extensions against
our geometric intuition of what we mean by an average orientation, as we have done for
rotations above. Unfortunately, things can get intuitively murky even in 2D, and hopelessly
so in 3D except in certain limiting cases.

Therefore it makes better sense to rely on the formal properties of whatever algebraic
system we use to calculate orientation averages. We shall attempt to develop a suitable
algebraic method having a plausible geometrical interpretation, then to intuitively test the
method in certain visualizable limiting cases.

5.3 Averaging 2D orientations

In spite of the �rst example given in section 5.1, it is not unusual for the calculated
average rotation to also equal what we expect for the average orientation. Thus we are mo-
tivated to �nd a procedure which degenerates to one formally equivalent to the procedure
for averaging rotations in such cases.

Figure 3 shows three distributions of orientations, 1 through 7. The angles in �gure
3a have been selected so the average orientation is precisely equal to orientation 4. The
distributions in 3b and 3c are successively expanded about orientation 4, like unfolding a
paper fan, such that the ratios of angles between orientations are preserved. Thus, the
average orientation in all three cases is expected to be precisely equal to orientation 4.

Fig 3a Fig 3b Fig 3c

1

7

7

7

1
1

444

Now let us look at the averages of the corresponding rotations. In �gures 3a and 3b, they
are fortuitously equal to rotation 4, but in 3c the average is closer to rotation 3. What's
di�erent about 3c?

We have shown the branch line for rotations as a dashed line in �gure 3, and have
also shown a dotted line directed precisely opposite from the average orientation. Our
geometric intuition leads us to interpret orientations CCW from the average up to the
dotted line to be positive displacements from the average, and CW ones to be negative.
In this sense, the dotted line is the natural branch line for the orientation average.

The disparity between orientation and rotation averages occurs whenever the two
sectors delineated by the orientation and rotation branch lines both contain at least one of
the averagands. If for example in �gure 3c the rotation branch were picked to lie anywhere
between orientations 1 and 7, the average rotation would be exactly equal to rotation 4.

Therefore, choosing the correct branch line, and averaging rotations mapped onto the
principle branch will consistently yield an average rotation equal to the expected average
orientation, as desired.
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But if we were given the distribution shown in �gure 3c de novo, it might be quite
di�cult to judge by eye what we would expect as the average orientation, so an intuitive
guess for the orientation branch line is problematical. Indeed, in the three way symmetric
example mentioned in section 5.1, there are three equivalently correct choices.

Thus a mechanism is needed to select the right branch, or branches if more than one
exist. Moreover, some measure is needed to quantify the relative quality of the multiple
possible candidates.

5.3.1 The mean and standard deviation of 2D orientations

Let us pick an arbitrary orientation � and de�ne an oppositely directed branch line
�b = (� + �). We wish to consider an ensemble of orientations (�i; i = 1 : : : n) mapped
onto the principle branch of �b. Let's look at the linear and quadratic functions L(�) =Pn

i=1(�� �i)=n and Q(�) =
Pn

i=1(�� �i)2=n respectively, for (0 � � < 2�) radians.
Figure 4 shows graphs of these functions corresponding to the three distributions

shown in �gure 3. A number of enlightening features are immediately apparent.
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Fig 4a Fig 4b Fig 4c

First, note that L(�) is a piecewise linear function, with a constant slope of 1. There are
n discontinuities, all of size �2�=n, occurring at locations �b = �i, so that L(0) = L(2�).
Excluding discontinuities, the zeros �k of L(�) by de�nition satisfy a requirement for being
a mean average. Clearly there is just one such solution, at 1.05 radians, in �gure 4a and less
obviously just one, also at 1.05 radians, in �gure 4b. In �gure 4c however, there are seven
such solutions, one of which is indeed at 1.05 radians. This ambiguity is quite consistent
with the di�culty mentioned above of judging which branch line is \correct."

Turning now to the function Q(�), it is apparent (and can easily be shown formally)
that it has a local minimum occurring at each location �k. At each of these locations,
�2k = Q(�k) provides a measure of the mean square deviation of the �i from �k. It is also
thereby a measure of how \good" the kth average is: intuitively, the average k with the
smallest �2k is the \best" one.

A tabulation of the �k in �gure 4c is shown here in order of increasing �2k. Apparently,

�k 1.05 1.95 0.15 2.84 5.54 3.74 4.64
�2k 2.78 2.81 3.21 3.22 3.22 3.83 3.83

the mean at 1.05 is the best, but not by much (and purely by accident). In fact, the spread
of all the �2k is not large. In contrast to �gures 4a and 4b, this case calls into question the
entire concept of a unique mean average of orientations. Indeed, we need look no further
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than the three way symmetric example mentioned in section 5.1 to �nd a case in which
this concept is meaningless.

Therefore the formal de�nition of a mean average of orientations must allow for a
multiple valued result. There are bounds on how many, however. There must be at least
one, the proof of which is left to the reader. And since each piecewise linear segment of
L(�) may contain at most one zero, there must be no more than n of them.

Accordingly, let us de�ne the mean average(s) of n orientations �i in a 2D space as,

�k =
1

n

nX
i=1

�i; (mean)

correspondingly, let us de�ne the variance(s) as

�2k =
1

n

nX
i=1

(�k � �i)
2; (variance)

and the standard deviation(s) as

�k =

vuut 1

n

nX
i=1

(�k � �i)2; (standard deviation)

where for each k, a branch is selected such that for all i,
��� < (�k � �i) � �

�
.

5.3.2 Algorithm for averaging 2D orientations

The properties of L(�) and Q(�) provide a straightforward and e�cient way of calcu-
lating the mean averages of n orientations �i and their corresponding variances. We start
with a list of n angles  i = (�i + �) at which the function L( i) will be discontinuous.
From this we calculate the lists L�i = L( i) and L+i = (L�i � 2�=n), which represent
respectively,

L�i =
CCW

lim
�! i

Li(�) and L+i =
CW

lim
�! i

Li(�):

The  i delimit n piecewise linear segments Si of L(�). The signs of L
+
i and L�(i+1) (modulo

n) di�er i� a zero of L(�) occurs in Si, a property used to detect the existence of a
mean in Si. If one exists, it may be calculated as �i = ( i � L+i ), or equivalently as
�i = ( (i+1)�L�(i+1)). Finally, given the calculated �i, the �2i are calculated directly from

the de�nition.
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5.4 Extension to 3D

Let us now address the other part of the problem, that of extending this result to
3 dimensions. We wish to �nd a method that degenerates to a formal identity with the
method for rotations in those cases where the results are the same. We also require that
the method be formally identical to the 2D method in that degenerate case.

We begin by observing that in the 2D case, the calculations were carried out in the
logarithmic or rotation imaginary space, even though the geometric �gures were shown in
the linear or rotation complex space. Accordingly, we shall work in the 3D logarithmic or
rotation vector space rather than the linear or rotation quaternion space.

Following the 2D development, we limit the range of the 3D orientation averagands
to the principal branch in rotation quaternion space. In rotation vector space, this maps
to the sphere jrj � �, the surface of which represents an angular magnitude of � radians
of rotation. With the exclusion of one hemispherical surface, which we shall ignore in this
development, this space which we shall call orientation vectors, represents all possible 3D
orientations.

5.4.1 Branches in orientation vector space

While rotation/orientation imaginaries represent rotations/orientations in a complex
2-space, they are themselves embedded in a 1D linear space. Rotation/orientation vectors
represent rotations/orientations in 3-space, while also themselves being 3-space entities.
Thus, an orientation imaginary is graphically represented by a line of length � starting
from an origin �0 while an orientation vector is analogously represented by v, a line of
length � in a 3-space direction û, starting from an origin v0.

For clarity of illustration, �gures 5 and 6 show 2D cross sections z = 0 of examples in
3-space in which, again for clarity, all points are constrained to lie in the plane z = 0.

Fig 5bFig 5a

2π

The averagands are �rst all mapped into the principal branch about an origin �0 = 0.
This origin is indicated by a \+", and the branch line by a dashed-line circle (representing
actually a spherical branch surface in 3-space). Figure 5a shows shows three averagands
as �s, one of which (in gray) must be displaced by a distance 2� in the direction of the
origin to map it into the principal branch.
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Extending the idea of the  i introduced in section 5.3.2, the orientation vector space
is partitioned into piecewise linear volumes separated by the branch surfaces about each
of the averagands. These surfaces are indicated by the solid line circles of radius � about
their respective �s in �gure 5b.

5.4.2 Finding the mean averages

The L(�) of section 5.3.2 is now extended to L(v) which is discontinuous across these
surfaces, but continuous within the volumes partitioned thereby. The task now becomes
to detect which volumes contain a zero, and for those that do, to locate the zero in the
volume. Alternatively, one could look for minima in the extended function Q(v).

Allowable mean averages must themselves be orientations, so it is not useful to sample
any volume outside the original principal branch. This ensures that no averagand can be
further from a mean than the diameter 2� of the original principal branch. This also
ensures that all averagands must be within the principal and second branches of a possible
mean, i.e. within a sphere of radius 2�.

Fig 6b

2π

Fig 6a

Figure 6 shows two sample points for evaluating L(v). The point is indicated by a
� with its branch surface indicated by a dotted line circle. In �gure 6a, the sample point
cohabits the same volume partition as all three averagands, which is another way of saying
all three averagands are within its principal branch. Moreover, it is located near a zero
in this partition, as can be seen by casual inspection. In �gure 6b, one of the averagands
is in a di�erent partition, separated by the branch surface of the sample point, which is
another way of saying that this averagand must be remapped to lie in the sample point's
principal branch before L(v) can be evaluated. This sample point also lies near a zero in
its partition, as is apparent by inspection.

5.4.3 Algorithm for averaging 3D orientations

I believe there is a simple method, but have not thought the problem through yet. I
encourage the reader to address this problem. Please let me know if you �nd a useful
result!
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6 Checks and comparisons

This section will make checks of calculated mean orientations against intuitively
tractable limiting cases. This awaits an algorithm so the cases can be evaluated.

It also will compare this method with other proposed methods. It will attempt to
show some formal equivalence, even if only in the limiting domains for which the other
methods are claimed to work. This awaits my time to get to it!

7 Conclusion

It is entirely possible this work duplicates results reported in some branch of literature
of which I am unaware. However it appears to me to have made several new contributions.

First, I have shown how to extend the averaging of 2D rotations to 3D. This was an
extension of averaging procedures for rotation complexes to work for rotation quaternions
through their respective logarithms.

Second is the insight of how branches must be handled in order to get intuitively
acceptable 2D orientation averages, and the realization that the notion of uniqueness is
lost in the domain of orientation averages.

Finally, the extension of the 2D orientation average concept to 3D which seems for-
mally plausible. It would be stronger and far more useful if an algorithm were also devel-
oped, but that must presently be considered future work.
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