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Abstract

The scheduling of systems of periodic tasks upon multiprocessor platforms is consid-
ered. Utilization-based conditions are derived for determining whether a periodic task
system meets all deadlines when scheduled using the earliest deadline �rst scheduling
algorithm (EDF) upon a given multiprocessor platform. A new priority-driven algo-
rithm is proposed for scheduling periodic task systems upon multiprocessor platforms:
this algorithm is shown to successfully schedule some task systems for which EDF may
fail to meet all deadlines.
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1 Introduction and Motivation

Over the years, the preemptive periodic task model [9, 8] has proven remarkably useful
for the modelling of recurring processes that occur in hard-real-time computer application
systems. In this model, a periodic task �i = (Ci; Ti) is characterized by two parameters { an
execution requirement Ci and a period Ti { with the interpretation that the task generates
a job at each integer multiple of Ti, and each such job has an execution requirement of
Ci execution units, and must complete execution by a deadline equal to the next integer
multiple of Ti. A periodic task system consists of several such periodic tasks that are to
execute on a speci�ed processor architecture. The jobs are assumed to be independent in
the sense that each job does not interact in any manner (accessing shared data, exchanging
messages, etc.) with other jobs of the same or another task. It is also assumed that the
model allows for job preemption; i.e., a job executing on a processor may be preempted prior
to completing execution, and its execution may be resumed later, at no cost or penalty.

The real-time scheduling of periodic task systems has been much studied. In the unipro-

cessor context | when there is exactly one shared processor available upon which to execute
all the jobs generated by all the tasks in the system | it is known that the earliest deadline

�rst scheduling algorithm (Algorithm EDF) [8, 2], which executes at each instant in time
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the currently active1 job whose deadline parameter is the smallest, is an optimal scheduling
algorithm in the sense that if a system can be scheduled such that all deadlines can be
met, then Algorithm EDF will schedule this system to meet all deadlines. The problem of
scheduling such periodic task systems on identical multiprocessor platforms { when there are
several identical processors available upon which the jobs generated by the periodic tasks
are to execute (with the constraint that an individual job may execute on either zero or one
processor at any instant in time) { was �rst posed by Liu in a seminal paper [9] in 1969. In
this paper, Liu identi�ed a set of properties for periodic task systems which are suÆcient
(albeit not necessary) to guarantee feasibility upon an m-processor identical multiprocessor
platform; i.e., any periodic task system satisfying these properties can always be scheduled
upon an m-processor identical multiprocessor platform to meet all deadlines. Much later,
Baruah et al. [1] presented necessary and suÆcient feasibility conditions, and an optimal
scheduling algorithm, based upon the notion of pfair scheduling. (Algorithm PF).

Pfair scheduling. Pfair scheduling was proposed as a way of optimally and eÆciently
scheduling periodic tasks on a multiprocessor system. Pfair scheduling di�ers from more
conventional real-time scheduling disciplines in that tasks are explicitly required to make
progress at steady rates. In the periodic task model, each task �i = (Ci; Pi) executes at
an implicit rate given by Ci=Pi. However, this notion of a rate is a bit inexact: a job
of �i may be allocated Ci time units at the beginning of its period, or at the end of its
period, or its computation may be spread out more evenly. Under pfair scheduling, this
implicit notion of a rate is strengthened to require each task to be executed at a rate that
is uniform across each job. Pfair scheduling algorithms ensure uniform execution rates by
breaking jobs into smaller subjobs. Each subjob must execute within a window of time, the
end of which acts as its pseudodeadline. These windows divide each period of a task into
subintervals of approximately equal length. By breaking tasks into smaller executable units,
pfair scheduling algorithms circumvent many of the bin-packing-like problems that lie at
the heart of intractability results involving multiple-resource real-time scheduling problems.
Intuitively, it is easier to evenly distribute small, uniform items among the available bins
than larger, non-uniform items.

However, this very feature of pfair scheduling algorithms can also prove a disadvantage
in certain implementations { one consequence of \breaking" each job of each task into sub-
jobs, and making individual scheduling decisions for each subjob, is that jobs tend to get
preempted after each of their constituent sub-jobs completes execution. As a result, pfair
schedules are likely to contain a large number of job preemptions and context-switches. For
some applications, this is not an issue; for others, however, the overhead resulting from
too many preemptions may prove unacceptable. Pfair scheduling is not the appropriate
scheduling approach for such application systems.

Priority-driven scheduling. Run-time scheduling is essentially the process of determin-
ing, during the execution of a real-time application system, which job[s] should be executed

1Informally, a job becomes active at its ready time, and remains so until it has executed for an amount
of time equal to its execution requirement, or until its deadline has elapsed.
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at each instant in time. Run-time scheduling algorithms are typically implemented as fol-
lows: at each time instant, assign a priority to each active job, and allocate the available
processors to the highest-priority jobs.

Di�erent scheduling algorithms di�er from one another in the manner in which prior-
ities get assigned to individual jobs by the algorithms. Some scheduling algorithms are
observed to have certain desirable features in terms of ease (and eÆciency) of implementa-
tion, particularly upon multiprocessor platforms. Some of the important characteristics of
such algorithms were studied by Ha and Liu [5, 6, 4], who proposed the following de�nition:

De�nition 1 (Priority-driven algorithms [6].) A scheduling algorithm is said to be a
priority driven scheduling algorithm if and only if it satis�es the condition that for every

pair of jobs Ji and Jj, if Ji has higher priority than Jj at some instant in time, then Ji
always has higher priority than Jj.

By this de�nition, Algorithm EDF is a priority-driven algorithm while Algorithm PF is
not.

From an implementation perspective, there are signi�cant advantages to using priority-
driven algorithms in real-time systems; while it is beyond the scope of this document to
describe in detail all these advantages, some important ones are listed below.

� Very eÆcient implementations of priority-driven scheduling algorithms have been de-
signed (see, e.g., [10]).

� It can be shown that when a set of jobs is scheduled using a priority-driven algorithm
then the total number of preemptions is bounded from above by the number of jobs
in the set (and consequently, the total number of context switches is bounded at twice
the number of jobs).

� It can similarly be shown that the total number of interprocessor migrations of indi-
vidual jobs is bounded from above by the number of jobs.

This research. The earliest deadline �rst scheduling algorithm (Algorithm EDF) is one
of the most popular scheduling algorithms used in real-time systms. In this paper, we �rst
study the EDF scheduling of periodic task systems upon identical multiprocessors | we
provide tight utilization-based conditions (Theorems 5 and 6) for determining whether a
particular periodic task system can be successfully scheduled by EDF upon a given multipro-
cessor platform. More generally, however, we believe that most features of EDF-scheduling
that make it such a popular scheduling algorithm | eÆcient implementations, bounded
preemptions and inter-processor migrations, etc. | are not unique to EDF, but instead
hold for all priority-driven scheduling algorithms. Therefore, we propose a variant of the
EDF scheduling algorithm that falls within the framework of priority-driven algorithms, and
which is provably superior to EDF in the sense that it schedules all periodic task systems
that EDF can schedule, and in addition schedules some periodic task systems for which EDF

may miss some deadlines.
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Organization. The remainder of this paper is organized as follows. In Section 2, we review
some prior results from real-time scheduling theory that we will be using in later sections. In
Section 3, we apply resource-augmentation techniques [7, 11] to develop theoretical results
that allow us to relate the feasibility (the existence of schedules) and EDF-schedulability

(the ability of EDF to successfully meet all deadlines) of periodic task systems | while
feasibilty is equivalent to EDF-schedulability in uniprocessor systems, this is not the case
upon multiprocessors. In Section 4, we apply the theory developed in Section 3 to obtain
utilization-based EDF-schedulability bounds for periodic task systems upon multiprocessors;
furthermore, we prove that these bounds are tight. In Section 5, we propose and analyze
a new priority-driven scheduling algorithm for scheduling periodic task systems upon mul-
tiprocessor platforms which is provably superior to EDF. In Section 6, we summarize the
results presented in this paper.

2 Background

We briey describe below some results in multiprocessor real-time scheduling theory that
will be used in the remainder of this paper.

2.1 Predictable scheduling algorithms

Ha and Liu [5, 6, 4] have studied the issue of predictability in the multiprocessor scheduling
of real-time systems from the following perspective.

Let us de�ne a job Jj = (rj; ej; dj) as being characterized by an arrival time rj, an
execution requirement ej, and a deadline dj, with the interpretation that this job needs to
execute for ej units over the interval [rj; dj).

De�nition 2 (Predictability) LetA denote a scheduling algorithm, and I = fJ1; J2; : : : ; Jng
any set of n jobs, Jj = (rj; ej; dj). Let fj denote the time at which job Jj completes execution
when I is scheduled using algorithm A.

Now, consider any set I 0 = fJ 01; J
0

2; : : : ; J
0

ng of n jobs obtained from I as follows. Job
J 0j has an arrival time rj, an execution requirement e0j � ej, and a deadline dj (i.e., job J 0j
has the same arrival time and deadline as Jj, and an execution requirement no larger than
Jj's). Let f

0

j denote the time at which job Jj completes execution when I is scheduled using
algorithm A. Scheduling algorithm A is said to be predictable if and only if for any set of
jobs I and for any such I 0 obtained from I, it is the case that f 0j � fj for all j.

Informally, De�nition 2 recognizes the fact that the speci�ed execution-requirement pa-
rameters of jobs are typically only upper bounds on the actual execution-requirements during
run-time, rather than the exact values. For a predictable scheduling algorithm, one may de-
termine an upper bound on the completion-times of jobs by analyzing the situation under the
assumption that each job executes for an amount equal to the upper bound on its execution
requirement; it is guaranteed that the actual completion time of jobs will be no later than
this determined value.
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Since a periodic task system generates a set of jobs, De�nition 2 may be extended in
a straightforward manner to algorithms for scheduling periodic task systems: an algorithm
for scheduling periodic task systems is predictable i� for any periodic task systems � =
f�1; �2; : : : ; �ng it is the case that the completion time of each job when every job of �i has an
execution requirement exactly equal to Ci is an upper bound on the completion time of that
job when every job of �i has an execution requirement of at most Ci, for all i; 1 � i � n.

The result from the work of Ha and Liu [5, 6, 4] that we will be using can be stated as
follows.

Theorem 1 (Ha and Liu) Any preemptive priority-driven scheduling algorithm is pre-
dictable.

2.2 Scheduling periodic task systems on uniform multiprocessors

Although our goal in this research is to study the scheduling of periodic task systems upon
identical multiprocessor platforms | multiprocessor machines in which all the processors are
identical | we �nd it useful to introduce a more general model of multiprocessor machines
| the uniform multiprocessor platform.

De�nition 3 (Uniform multiprocessors.) A uniform multiprocessor platform is com-
prised of several processors. Each processor P is characterized by a single parameter |
a speed (or computing capacity) speed(P ), with the interpretation that a job that executes
on processor P for t time units completes speed(P )� t units of execution2.

Let � denote a uniform multiprocessor platform. We introduce the following notation:

s�
def

= max
P2�

fspeed(P )g :

S�
def

=
X
P2�

speed(P ) :

That is, s� denotes the computing capacity of the fastest processor in �, and S� the total
computing capacity of all the processors in �.

The problem of determining whether a particular periodic task system is feasible on
a given uniform multiprocessor platform has been studied (see, e.g., [3]). The following
theorem was proved in [3].

Theorem 2 Let � denote a periodic task system. There is a uniform multiprocessor plat-
form � upon which � is feasible, which satis�es the following two properties:

� The fastest processor in � has computing capacity equal to the largest utilization of
any task in � i.e.,

s� = max
�i2�

�
Ci

Ti

�
: (1)

2Observe that identical multiprocessors are a special case of uniform multiprocessors, in which the com-
puting capacities of all processors are equal and generally assumed equal to unity.
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� The cumulative computing capacity of � is equal to the utilization of � ; i.e.,

S� =
X
�i2�

Ci

Ti
: (2)

3 EDF-scheduling on identical multiprocessors

In this section, we develop a theoretical framework that permits us to relate the feasibility
of a real-time system upon a particular multiprocessor platform to its EDF-schedulability
upon a di�erent real-time platform. This framework is more general than is needed for our
purposes | while we are interested in periodic task systems only, the results we derive here
hold for any arbitrary collection of jobs (and not just those generated by periodic tasks);
also, these jobs needn't all be known beforehand to EDF, but can be revealed on-line.

In the context of uniprocessor scheduling, a work-conserving scheduling algorithm is de-
�ned to be one that never idles the (single) processor while there is any active job awaiting
execution. This de�nition extends in a rather straightforward manner to the identical mul-
tiprocessor case:

De�nition 4 (Work-conserving scheduling algorithms.) An algorithm for scheduling
on identical multiprocessors is de�ned to be work-conserving if it never leaves any processor
idle while there remain active jobs awaiting execution.

Note that EDF is a work-conserving algorithm by this de�nition.

Some additional notation:

De�nition 5 (W(A; �; I; t).) Let I denote any set of jobs, and � any uniform multipro-
cessor platform. For any algorithm A and time instant t � 0, let W (A; �; I; t) denote the
amount of work done by algorithm A on jobs of I over the interval [0; t), while executing on
�.

Lemma 1 Let � denote a uniform multiprocessor platform with cumulative processor-
capacity S�, and in which the fastest processor has computing capacity s�, s� < 1. Let
�0 denote an identical multiprocessor platform comprised of m0 unit-capacity processors.
Let A denote any uniform multiprocessor scheduling algorithm, and A0 any work-conserving

m0-processor identical multiprocessor scheduling algorithm. If the following condition is
satis�ed:

m0 �
S� � s�
1� s�

(3)

then for any collection of jobs I and any time-instant t � 0,

W (A0; �0; I; t) � W (A; �; I; t) : (4)
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Proof: The proof is by contradiction. Suppose then that it is not true; i.e., there is some
time-instant by which a work-conserving algorithm A0 executing on �0 has performed strictly
less work than some other algorithm A executing on �. Let Jj 2 I denote a job with the
earliest arrival time such that there is some time-instant to satisfying

W (A0; �0; I; to) < W (A; �; I; to)

and the amount of work done on job Jj by time-instant to in A0 is strictly less than the
amount of work done on Jj by time-instant to in A.

By our choice of rj, it must be the case that

W (A0; �0; I; rj) � W (A; �; I; rj)

Therefore, the amount of work done by A over [rj; to) is strictly more than the amount of
work done by A0 over the same interval.

Let x denote the cumulative length of time over the interval [rj; to) during which A0 is

executing on all m0 processors; let y
def

= ((to � rj) � x) denote the length of time over this
interval during which A0 idles some processor.

We make the following two observations.

� Since A0 is a work-conserving scheduling algorithm, job Jj, which has not completed
by instant to in the schedule generated by A0, must have executed for at least y time
units by time to in the schedule generated by A0; while it could have executed for at
most (x+ y) time units in the schedule generated by A; therefore,

(x + y) � s� > y : (5)

� The amount of work done by A0 over [rj; to) is at least

(m0x + y) ;

while the amount of work done by A over this interval is at most

S� � (x + y) ;

therefore, it must be the case that

S� � (x + y) > (m0x + y) : (6)

Adding (m0 � 1) times Inequality 5 to Inequality 6, we get

(m0 � 1)(x+ y) � s� + S�(x + y) > (m0 � 1) � y + (m0x+ y)

� ((m0 � 1)s� + S�) � (x+ y) > m0 � (x + y)

� (m0 � 1)s� + S� > m0

� S� � s� > m0 �m0s�

�
S� � s�
1� s�

> m0
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which is a contradiction of Condition 3.

The following theorem applies Lemma 1 to the case where the work-conserving algorithm
A0 of Lemma 1 is Algorithm EDF, and algorithm A of Lemma 1 is an optimal (o�ine)
scheduler.

Theorem 3 Let � denote an m-processor uniform multiprocessor platform with cumulative
processor-capacity S�, and in which the fastest processor has computing capacity s�, s� < 1.
Let I denote an instance of jobs that is feasible on �. Let �0 denote an identical multiprocessor
platform comprised of m0 unit-capacity processors. If Condition 3 of Lemma 1 is satis�ed,
then I will meet all deadlines when scheduled using the EDF algorithm executing on �0.

Proof: As a consequence of � and �0 satisfying Condition 3, it follows from Lemma 1 that
the work done at any time-instant t by EDF scheduling I on �0 is at least as much as the
work done by that time-instant t by an optimal scheduling algorithm executing I on �:

W (EDF; �0; I; t) � W (opt; �; I; t) for all t � 0 ;

where opt denotes an algorithm that generates a schedule for I which meets all deadlines
on � | since I is assumed feasible on �, such a schedule exists.

We now prove by induction that I is scheduled by EDF to meet all deadlines on �0. The
induction is on the number of jobs in I. Speci�cally, let Ik

def

= fJ1; : : : ; Jkg denote the k jobs
of I with the highest EDF-priority.

Base case. Since Io denotes the empty set, Io can clearly be scheduled by EDF to meet
all deadlines on �0.

Induction step. Assume that EDF can schedule Ik on �0 for some k and consider the
EDF-generated schedule of Ik+1 on �0. Note that Ik � Ik+1 and that the Jk+1 does not e�ect
the scheduling decisions made by EDF on the jobs fJ1; J2; : : : ; Jkg while it is scheduling Ik+1.
That is, the schedule generated by EDF for fJ1; J2; : : : ; Jkg while scheduling Ik+1, is identical
to the schedule generated by EDF while scheduling Ik; hence by the induction hypothesis,
these k highest priority jobs fJ1; J2; : : : ; Jkg of Ik+1 all meet their deadlines. It remains to
prove that Jk+1 also meets its deadline.

Let us now turn our attention to the schedules generated by opt executing on �. Since
I is assumed to be feasible on �, it follows that Ik+1 is also feasible on � and hence opt will
schedule Ik+1 on � to meet all deadlines. That is,

W (opt; �; Ik+1; dk+1) =
k+1X
i=1

ci;

where dk+1 denotes the latest deadline of a job in Ik+1. By Lemma 1

W (EDF; �0; Ik+1; dk+1) � W (opt; �; Ik+1; dk+1) =
k+1X
i=1

ci:
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Since the total execution requirement of all the jobs in Ik+1 is
Pk+1

i=1 ci it follows that job
Jk+1 meets its deadline.

We have thus shown that EDF successfully schedules all the jobs of Ik+1 to meet their
deadlines on �0. The theorem follows.

4 EDF-scheduling of periodic task systems

In this section and the next, we apply the theory developed in Section 3 above to study the
priority-driven scheduling of periodic task systems on identical multiprocessor platforms.
In this section, we study the EDF-scheduling of periodic task systems on multiprocessor
platforms; in Section 5, we consider the problem of scheduling periodic task systems upon
multiprocessor platforms when we are not restricted to using EDF, but rather may use any
priority-driven algorithm.

The results of Section 3 are applicable to on-line scheduling | the characteristics of jobs
need not be known prior to their arrival times. Although scheduling a periodic task system is
not an on-line problem in the sense that all task parameters are assumed known beforehand,
the results in Section 3 nevertheless turn out to be useful towards developing a framework
for scheduling periodic task systems on multiprocessors.

Let � = f�1; �2; : : : ; �ng denote a periodic task system. Let ui
def

= (Ci=Ti) denote the
utilization of task Ti for each i, 1 � i � n, and let U(�)

def

=
Pn

i=1 ui denote the utilization of
task system � . We require that ui � 1 for all i, 1 � i � n. Without loss of generality, we
assume that tasks are indexed according to non-increasing utilization; i.e., ui � ui+1 for all

i, 1 � i < n. We introduce the notation � (i) to refer to the task system comprised of the
(n� i+ 1) minimum-utilization tasks in � :

� (i)
def

= f�i; �i+1; : : : ; �ng :

(According to this notation, � � � (1).)

By a direct application of Theorems 2 and 3, we obtain below a suÆcient condition for
a periodic task system to be successfully scheduled by EDF. By Theorem 2, periodic task
system � is feasible on some uniform multiprocessor platform � with cumulative computing
capacity S� = U(�), in which the fastest processor has speed s� = u1. Hence by Theorem 3,
we obtain the following theorem:

Theorem 4 Periodic task system � can be EDF-scheduled upon an identical multiprocessor
platform comprised of m unit-capacity processors, provided

m �

&
U(�)� u1
1� u1

'
(7)

(Note that, as u1 ! 1, the right-hand side of Inequality 7 approaches1. However, the number of processors

needed for EDF to successfully schedule � cannot exceed the number of tasks n; hence the right-hand side
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of Inequality 7 could be replaced by min(n;
l
U(�)�u1
1�u1

m
). For reasons of algebraic simplicity, we do not make

this explicit in the remainder of this paper.)

Theorem 5 follows by algebraic simpli�cation of Equation 7:

Theorem 5 Periodic task system � can be EDF-scheduled upon m unit-speed identical
processors, provided its cumulative utilization is bounded from above as follows:

U(�) � m� u1 � (m� 1) : (8)

It turns out that the bounds of Theorem 4 and 5 are in fact tight:

Theorem 6 Let m denote any positive integer > 1, u1 any real number satisfying 0 <
u1 < 1, and � an arbitrarily small positive real number, � � u1. EDF cannot schedule
some periodic task systems with cumulative utilization m � u1(m � 1) + � in which the
largest-utilization task has utilization equal to u1, upon m unit-speed processors.

Proof: Let p denote some positive number. We construct a task set � as follows.

1. Task �1 has execution requirement C1 = u1 � p and period T1 = p.

2. Tasks �2; �2; : : : ; �n all have period Ti = p and execution requirement Ci = C for all i,
1 < i � n, satisfying

(n� 1) � C = m � (1� u1) � p+mÆ ;

where Æ = (p � �)=m. Furthermore, n is chosen such that n� 1 is a multiple of m, and
is large enough so that C � u1 � p.

The largest-utilization task in � is �1, which has utilization equal to (u1 � p)=p = u1. The
cumulative utilization of tasks in � is given by

U(�) =
u1 � p

p
+

C2

p
+

C3

p
+ � � �+

Cn

p

= u1 +
(n� 1) � C

p

= u1 +m � (1� u1) +m
Æ

p

= m� u1 � (m� 1) + �

Now consider the scheduling of the �rst jobs of each task, and suppose that EDF breaks
ties such that �1's �rst job is selected last for execution3. Then EDF schedules the jobs of
tasks �2; �3; : : : before scheduling �1's job; these jobs of �2; �3; : : : consume all m processors
over the interval [0; (1 � u1) � p + Æ), and �1's job can only begin execution at time-instant
(1� u1) � p + Æ. Therefore �1's job's completion time is ((1� u1) � p + Æ + u1 � p) = (p + Æ),

3Alternatively, �1's period can be chosen to be in�nitesimally larger than p { this would force EDF to
schedule �1's job last, without changing the value of m.
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and it misses its deadline. Thus, the � we have constructed above is a periodic task system
with utilization U(�) = m� u1(m� 1) + �, which EDF fails to successfully schedule upon m
unit-speed processors. The theorem follows.

Phillips, Stein, Torng, and Wein [11] had proved that any instance of jobs feasible upon
m unit-capacity multiprocessors can be EDF-scheduled upon m processors each of capacity
(2� 1

m
). For periodic task systems, we see below (Theorem 7) that this follows as a direct

consequence of the results above.

Lemma 2 Any periodic task system � = f�1; �2; : : : ; �ng satisfying

1. ui � m=(2m� 1) for all i, 1 � i � n, and

2. U(�) � m2=(2m� 1)

will be scheduled by Algorithm EDF to meet all deadlines on m unit-capacity processors.

Proof Sketch: By Theorem 4, � can be EDF-scheduled on
l
U(�)�u1
1�u1

m
unit-capacity proces-

sors; by substituting for U(�) and u1, we obtain&
U(�)� u1
1� u1

'
=

2666
m2

2m�1
� m

2m�1

1� m
2m�1

3777 =

& m
2m�1

� (m� 1)
2m�1�m
2m�1

'
=

&
m(m� 1)

(m� 1)

'
= dme = m :

Theorem 7 Any periodic task system that is feasible upon m unit-capacity processors will

be scheduled by Algorithm EDF to meet all deadlines on m (2�
1

m
)-capacity processors.

Proof Sketch: Suppose that periodic task system � = f�1; �2; : : : ; �ng is feasible upon m
unit-capacity processors. It must be the case that

1. ui � 1 for all i, 1 � i � n | i.e., no individual task needs more than an entire
processor, and

2. U(�) � m | i.e., the cumulative computing requirement of � does not exceed the
capacity of the platform.

The theorem now follows directly from Lemma 2, by scaling all utilizations and processor-
speeds by a factor of (2� 1

m
).

5 Priority-driven scheduling of periodic task systems

If we are not tied to using EDF, but can instead use any priority-driven scheduling algorithm,
we can often schedule a periodic task system � upon fewer than the d(U(�)� u1)=(1� u1)e
processors mandated by Theorems 4 and 6. Recall that tasks in � are indexed according to
non-increasing utilization (i.e., ui � ui+1 for all i, 1 � i < n), and consider the following
priority-driven scheduling algorithm:
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Algorithm EDF(k) assigns priorities to jobs of tasks in � according to the following rule:

For all i < k, �i's jobs are assigned highest priority (ties broken arbitrarily) | this is
trivially achieved within an EDF implementation by setting all deadlines of �i equal to
�1.

For all i � k, �i's jobs are assigned priorities according to EDF.

That is, Algorithm EDF(k) assigns highest priority to jobs generated by the k � 1 tasks in �
that have highest utilizations, and assigns priorities according to deadline to jobs generated
by all other tasks in � . (Thus, \pure" EDF is EDF(1).)

Theorem 8 Periodic task system � will be scheduled to meet all deadlines on m unit-speed
processors by Algorithm EDF(k), where

m = (k � 1) +

&
U(� (k+1))

1� uk

'
(9)

Proof: By Theorem 2, � (k) is feasible on some uniform multiprocessor platform with
cumulative computing capacity U(� (k)), in which the fastest processor has speed uk. Hence by
Theorem 3, � (k) can be EDF-scheduled upon an identical multiprocessor platform comprised
of m̂ unit-capacity processors, where

m̂
def

=

&
U(� (k+1))

1� uk

'
:

It follows from the de�nition of m (Equation 9) that

m = (k � 1) + m̂ :

Now, consider the task system ~� obtained from � by replacing each task in (� n � (k)) by
a task with the same period, but with utilization equal to one:

~�
def

=
k�1[
j=1

f(Tj; Tj)g
[

� (k) :

Let us consider the scheduling of ~� by Algorithm EDF(k), on m unit-capacity processors
(where m is as de�ned in Equation 9). Notice that Algorithm EDF(k) will assign identical
priorities to corresponding tasks in � and ~� (where the notion of \corresponding" is de�ned
in the obvious manner). Also notice that when scheduling ~� , Algorithm EDF(k) will devote
(k�1) processors exclusively to the (k�1) tasks that generate jobs of highest priority (since
each has a utilization equal to unity) and will be executing EDF on the jobs generated by
the remaining tasks (the tasks in � (k)) upon the remaining m̂ processors. As we have seen
above, Algorithm EDF schedules the tasks in � (k) upon m̂ processors to meet all deadlines;
hence, Algorithm EDF(k) schedules ~� upon m processors to meet all deadlines of all jobs

Finally, notice that an execution of Algorithm EDF(k) upon m processors on task system
� can be considered to be an instantiation of a run of Algorithm EDF(k) upon m processors
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on task system ~� , in which some jobs | the ones generated by tasks whose jobs are assigned
highest priority| do not execute to their full execution requirement. Since Algorithm EDF(k)

is a predictable scheduling algorithm, it follows by the result of Ha and Liu (Theorem 1) that
each job of each task during the execution of Algorithm EDF(k) on task system � completes
no later than the corresponding job during the execution of Algorithm EDF(k) on task system
~� . And, we have already seen above that no deadlines are missed during the execution of
Algorithm EDF(k) on task system ~� .

By Theorem 4, d(U(�) � u1)=(1� u1)e unit-capacity processors suÆce to guarantee that
all deadlines of periodic task system � are met, if � is scheduled using EDF. As the following
corollary states, we can often make do with fewer than d(U(�)� u1)=(1� u1)e processors if
we are not restricted to using the EDF scheduling algorithm, but may instead choose one of
the priority-driven algorithms Algorithm EDF(k), for some k, 1 � k < n.

Corollary 1 Periodic task system � will be scheduled to meet all deadlines on

mmin(�)
def

=
n

min
k=1

(
(k � 1) +

&
U(� (k+1))

1� uk

')
(10)

unit-capacity processors by a priority-driven scheduling algorithm.

Proof: Let kmin(�) denote the smallest value of k that minimizes the right-hand side of
Equation 10:

mmin(�) � (kmin(�)� 1) +

&
U(� (kmin(�)+1))

1� ukmin(�)

'
It follows directly from Theorem 8 that � can be scheduled to meet all deadlines upon

mmin(�) unit-speed processors by the priority-driven algorithm Algorithm EDF(kmin(�)).

Algorithm PriD. Based upon Corollary 1 above, we propose the following priority-driven
scheduling algorithm for scheduling periodic task systems upon identical multiprocessors:
Given a periodic task system � = f�1; �2; : : : ; �ng with ui � ui+1 for all i, 1 � i < n,
Algorithm PriD computes mmin(�) according to Equation 10, and schedules � by Algo-
rithm EDF(kmin(�)).

Example 1 Consider a task system � comprised of �ve tasks:

� = f(9; 10); (14; 19); (1; 3); (2; 7); (1; 5)g;

for this system, u1 = 0:9, u2 = 14=19 � 0:737, u3 = 1=3, u4 = 2=7 � 0:286, and u5 = 0:2;
U(�) consequently equals � 2:457.

It may be veri�ed that for this task system, the right-hand side of Equation 10 is minimzed
for k = 3; hence, kmin(�) = 3 and mmin(�) equals

(3� 1) +
�
0:286 + 0:2

1� 0:334

�
= 2 +

�
0:486

0:667

�
= 3

13



That is, � can be scheduled to meet all deadlines by Algorithm EDF(3) on 3 processors.

By contrast, Theorem 4 can only guarantee that all deadlines will be met upon
l
U(�)�u1
1�u1

m
� d1:557=0:1e = 16 processors, if � were scheduled using EDF.

Experimental evaluation

Above, we proposed a new priority-driven scheduling algorithm { Algorithm PriD { and
proved that this algorithm often makes better use of available computing resources than
\pure" EDF. We now experimentally evaluate Algorithm PriD and compare its performance
with that of EDF.

In our experiments we shall study our technique based on randomly chosen systems. We
are cognizant that it is in general very diÆcult to draw accurate conclusions regarding the
bene�ts of a proposed technique from \simulations", since these bene�ts often depend in
a non-obvious way upon the many parameters of the real-time system | in particular on
the (distribution of the) system characteristics (the number of tasks, the load of the system,
etc.). It is of course not possible to consider all distributions of real-time systems in our sim-
ulations; moreover, it is diÆcult to determine which distributions are reasonable, and which
are not. For some of our simulation experiments, we have therefore made use of the pseudo-
random task set generator developed by Ripoll et al. [12] for evaluating a feasibility-analysis
algorithm, which they have very generously made available to us. Workloads generated by
the Ripoll et al. generator have been widely used for experimentally evaluating real-time
scheduling algorithms, and these experiments have been revealed to the larger research com-
munity for several years now. We believe that using this task generator provides a context
for our simulation results, and allows them to be compared with other results performed by
other researchers.

We use the pseudo-random periodic task set generator proposed by Ripoll and colleagues,
with the same parameters as in [12] except the utilization factor of the system which is
uniformly drawn from interval [1; 10], the computation times are uniformly chosen from the
interval [1; 20], the deadlines from the interval [2; 170], and the periods from the interval
[3; 670]. Figure 1 shows the average (i.e., the aritmetic mean) number of processors needed
by Algorithms PriD and EDF as a function of total utilization U(�).

Mixed systems. The experiments described above indicate that Algorithm PriD tends to
require fewer processors than pure EDF in general, in order to schedule a given periodic task
system. The bene�ts of Algorithm PriD seem to be even more signi�cant if the utilizations
of the tasks are less homogeneous than is the case for task systems generated by the Ripoll
et al. generator [12], but instead tend to be clustered around two di�erent values; i.e., most
tasks in the set of tasks can be classi�ed into two categories: \heavy" and \light" tasks.

In this set of experiments, we can no longer use the task-generator proposed by Ripoll
and colleagues (which generates systems of a given total utilization). Our task-generation
methodology is instead as follows: we choose values for the average utilization of the heavy
tasks x1, and the average utilization of the light tasks x2, and generate task systems com-
prised of 50 tasks as follows:
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Figure 1: Average number of processors needed, as a function of total utilization U(�).
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Figure 2: Average number of processors needed, as a function of number of heavy tasks
(x1 = 0:8; x2 = 0:4).
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1. n1  0;

2. Generate4 n1 heavy tasks:
ui  normal(x1; �1) i = 1; : : : ; n1;

3. Generate 50� n1 light tasks:
ui  normal(x2; �2) i = n1 + 1; : : : ; n;

4. Re-order the utilization factors such that u1 � u2 � � � � � un;

5. mmin  minnk=1

n
(k � 1) +

l
U(� (k+1))
1�uk

mo
;

6. emmin  min
n
m j m > 0 ^ U(�) � m

2

2�m�1

o
;

7. n1  n1 + 1;

8. if n1 � 50 repeat from step 2.

Figures 2 and 3 show the average number of processors needed by Algorithms PriD and
EDF, as a function of the number of heavy tasks n1. These graphs are obtained by applying
the above algorithm to a large number of randomly chosen utilization factors. Figure 2
corresponds to the case where x1 = 0:8 and x2 = 0:4. Figure 3 corresponds to the case where
x1 = 0:95 and x2 = 0:1. In both cases, we observe that Algorithm PriD compares more
favorably to EDF, than was the case with task-systems generated according to the Ripoll et
al. task-generator [12].

6 Summary

Despite the fact that it is provably non-optimal in multiprocessor systems, there is consider-
able interest in being able to implement the earliest deadline �rst scheduling algorithm (EDF)
upon multiprocessor platforms. In this paper, we have provided a comprehensive analysis
of the EDF-scheduling of periodic task systems upon multiprocessor platforms, by proving a
tight utilization-based feasibility condition which depends upon both the total utilization of
the system and the maximum utilization of any individual task comprising the system.

We believe that many of the properties of EDF that contribute to its popularity among
real-time systems designers | eÆcient implementations, bounded preemptions and inter-
processor migrations, etc. | are in fact satis�ed by all priority-driven scheduling algorithms.
Accordingly, we have proposed and evaluated here Algorithm PriD, a new priority-driven
scheduling algorithm for scheduling periodic task systems upon multiple processors that is
provably superior to EDF in the sense that it schedules all periodic task systems that EDF
can schedule, and in addition schedules some periodic task systems for which EDF may miss
some deadlines.

4normal(x; �) represents a pseudo-random number generator which uses the normal distribution (with an
average of x and a standard deviation of �) restricted to values in the interval (0; 1).
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