
Page 1

VRPN: A Device-Independent, Network-Transparent VR Peripheral System

Russell M. Taylor II, Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano, Aron T. Helser
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract
The Virtual-Reality Peripheral Network (VRPN) system
provides a device-independent and network-transparent
interface to virtual-reality peripherals. VRPN’s extended
methods for factoring devices by function are novel and
powerful. VRPN also integrates a wide range of known
advanced techniques into a publicly-available system.
These techniques benefit both direct VRPN users and those
who implement other applications that make use of VR
peripherals.

CR Descriptors: C.3 [Special-Purpose and Application-
Based Systems]: Real-time systems; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism –
Virtual Reality; I.6.8 [Simulation and Modeling]: Types of
Simulation –Distributed.

Additional Keywords: interactive graphics, virtual envi-
ronment, virtual world, input devices.

1. Introduction
VRPN is a set of classes within a library and a set of servers
that implement a device-independent, network-transparent
interface between application programs and the set of
physical devices (trackers, etc.) used in a virtual-reality
(VR) system. VRPN provides:

• Access to a variety of VR peripheral devices through a
common, extensible interface,

• Network-transparent interface to devices,
• Time stamps for all messages to and from devices
• Clock synchronization between clients and servers on

different machines,
• Multiple simultaneous connections to devices,
• Automatic reconnection to failed remote servers, and
• Storage and replay of interactive sessions.

The VRPN application-side library runs on at least
PC/Win32, SGI/Irix, PC/Linux, PC/Cygwin, Sparc/Solaris,
HP700/Hpux, and PowerPC/AIX. The server-side library
is fully functional under SGI/Irix, PC/Win32 and PC/Linux,
and functional except for serial-port code on the other sys-
tems. There are drivers for:

Trackers: Ascension Flock of birds (single or multiple
serial lines), Polhemus Fastrak, Intersense IS-600 and IS-
900 (including wands and styli), Origin Systems DynaSight,
SensAble Technologies PHANToM, 3rdTech HiBall, Logi-

tech Magellan, and Radamec Serial Position Interface
(video/movie camera tracker).

Other devices:Logitech Magellan (analog values and but-
tons), B&G systems CerealBox (buttons, dials, sliders),
NRL ImmersionBox serial driver (buttons), Wanda (analog,
buttons), National Instruments A/D cards, Win32 sound
server based on the Miles SDK, SGI button and dial boxes,
and the UNC hand-held Python controller (buttons).

VRPN is public-domain, open-source software with a user
community in academia, industry and the national labs. [1]
Twenty-seven off-site users are currently on the project
mailing list. New device drivers and bug fixes have come
from the University of Illinois at Urbana-Champaign, the
National Center for Supercomputing Applications, the Uni-
versity of North Carolina at Chapel Hill, the Naval Re-
search Laboratory, and Brown University. Commercial
support for driver development and new features has come
from Walt Disney VR Studios and Schlumberger Cam-
bridge Research. All of these improvements have been
released in the public domain versions.

VRPN was developed to address the following concerns:
• Laboratories with multiple graphics display stations re-

quire access to VR peripherals from a variety of ma-
chines. It is often inconvenient to co-locate the ma-
chines with the devices, or to run interface cables from
each device to each host.

• Some VR devices (especially trackers) perform more
reliably when left on continuously, and require lengthy
reset procedures when closed and re-opened.

• Different devices may have radically different inter-
faces, yet perform essentially the same function; some
require specialized connections (PC joysticks) or have
drivers only for certain operating systems.

• VR applications require minimum latency, and need to
know at what time events occur in the system.

These criteria led us to an architecture where input/output
devices at each display station are connected to one or more
local device servers. These servers communicate with
graphics engines through a switched Ethernet.

This paper describes VRPN version 05.04. Device factor-
ing is described in detail, since it is the novel contribution.
The other features are mostly drawn from existing systems:
their combination in a publicly-available system is the sec-



Page 2

ond contribution. These features are presented in the fol-
lowing categories: networking, separate client and server,
storage and replay, and performance. Implementation de-
tails for these features are usually omitted (they are in the
publicly-available code).

Related work: Many existing toolkits provide complete
distributed virtual world interfaces, concentrating on flexi-
bility and generality. There are both commercial systems
(including Division’s dVS [2], Sense8’s WorldToolKit [3],
and Panda3D [4]) and research systems (including the MR
toolkit [5], GIVEN++ [6], DIVE [7], BrickNet [8], Al-
ice/DIVER [9], AVIARY [10], Maverik/DEVA [11], VR
Juggler [12], Bamboo [13], and Dragon [14]). There is also
recent unpublished work by the DIVERSE [15] group.

VRPN does not aim to provide an overall VR API. It fo-
cuses on the sub-problem of providing low-latency, robust,
and network-transparent access to devices; and specifically
to provide a uniform interface to a wide range of devices.

Several users of existing toolkits have integrated VRPN as
a device-interface layer. Users at Brown have developed a
VRPN server that works with WorldToolkit, the Maverik
system is being extended to use VRPN devices, NCSA uses
VRPN within several of its CAVE applications, the Naval
Research Laboratory has integrated VRPN into Dragon
applications, VRPN is being extended to be a dynamically-
loadable Bamboo module, the developers of Panda3D are
using VRPN to communicate with several VR devices, and
the DIVERSE group is developing a VRPN layer.

2. Device Types and Factoring
It has been very fruitful to think of VRPN not as providing
drivers for a set of devices, but rather as providing inter-
faces to a set of functions. Particular devices are of one or
morecanonical device types. Each type specifies a consis-
tent interface and semantics across devices implementing
that function. [16] Common device types are listed below.
Other device types are provided; new types can be created.

• Tracker reports poses (position plus orientation), pose
velocities, and/or pose accelerations.

• Buttonreports press and release events for one or more
buttons; individual buttons may be set by the client to
be toggle or momentary.

• Analogreports one or more analog values.
• Dial reports incremental rotations.
• ForceDevice allows clients to specify surfaces and

force fields in 3-space.

Mapping a set of devices into one canonical type requires
mapping the different capabilities of each device onto one
interface. There is a tension between providing a very sim-
ple interface (which does not allow access to particular ad-
vanced features) and providing a feature-rich interface
(where many devices do not implement many of the fea-
tures, forcing application code to deal with many cases).
VRPN deals with these issues by:

• factoring devices based on their functions,
• mapping devices to connections within VRPN,
• allowing devices to export multiple interfaces,
• silently ignoring unsupported message types,
• providing application-level access to all messages.

Factoring based on function: Often a particular device’s
special features amount to implementing more than one
function (a tracker sensor with a built-in button, for exam-
ple). VRPN has the driver for the device export interfaces
for multiple device types. The server for the PHANToM
haptic display illustrates this: it exports Tracker, Button,
and ForceDevice interfaces under the same device name.
The client deals with a Phantom as if it were three separate
devices, one for each of its functions.

Factoring makes it easy to move an application to different
sets of input/output devices. No client-side code change is
needed to move an application from an Intersense IS-900
tracker with an integrated button and analog controller to a
Fastrak sensor attached to a Wanda device, then to a Phan-
tom haptic display. An application built for a Phantom
haptic display can be tested on either of the other setups,
although no forces will be generated.

Mapping devices to connections:While the Tracker, But-
ton and ForceDevice devices for a Phantom are logically
separate, they are all internally mapped to the same data
stream for communication efficiency. Internally, VRPN
maintains a list of open connections; when a new device or
connection request maps to an existing connection, a
pointer to the existing connection is returned.

Exporting multiple interfaces: In some cases, the same
physical device may behave as different device types at
different times. For example, a freely-rotating dial might be
used to either specify an orientation (the Dial interface) or
to specify a value (the Analog interface). A VRPN driver
can export both interfaces for the same device under differ-
ent names and the client can use either.

A special case of multiple interfaces is thelayered device.
In this case, higher-level behavior is built on top of an exist-
ing device. An instance is theAnalogFlyserver, designed
for flying with joysticks: the joystick driver reports analog
values for each of its axes and the AnalogFly integrates
these values into Tracker messages. The AnalogFly is also
used with the Radamec Serial Position Interface video-
camera-tracking device, integrating its pan and tilt axes into
a Tracker report. Clients can connect both to the low-level
analog device (to read focus and zoom from the Radamec
camera tracker, for example) and to the higher-level tracker
device (see figureLayered).

Another special case of multiple interfaces is themultiple-
behavior device. Within DEPARTMENT, there are several
groups that use joystick devices to fly the user. Each group
has its own mapping of joystick axes to transformations,
depending on application requirements and user prefer-



Page 3

Tracker0 Tracker1

Tracker1

Analog
Button

Figure Layered: Devices can be layered, so that the outputs
from one device driver can become inputs to another.
Application code can attach to either or both devices. The
same driver can export multiple interfaces of the same type
under different names.

vrpn_Joystick

vrpn_AnalogFly Client app

Client app

ences. Using multiple instances of AnalogFly servers, each
with a unique name, joystick servers export all interfaces at
once. Each client connects to the interface with the desired
mapping (see figureLayered).

Silently ignoring unknown messages:Functions applica-
ble to several devices of a type that can be ignored by other
devices can be implemented in the base device type. An
example is the message that sets the report rate for tracker
servers. Servers with variable update rates (like the ceiling
tracker and Phantom) adjust their rates to match that re-
quested, while other servers silently ignore these messages.
This extends the common interface and enables access to
special functions on some devices while not requiring all
functions to be implemented on all devices.

Application-level access to messages:Some devices may
have idiosyncratic functions captured neither by existing
device types nor generally applicable to other devices of the
same class (calibration, for example). In this case, the cali-
bration application can directly send and receive new mes-
sage types, giving access to the extended functions on the
device server without requiring changes to the library
classes. Such a specialized calibration application could be
run at the same time as standard applications. To date, no
device has required this sort of idiosyncratic interface.

Example new device:An example is helpful to show how
these features work together. Let’s plan a driver for Meas-
urand SHAPE TAPE. [17] This tape consists of a linear
chain of links embedded in flexible tape. Two orientation
components of each link relative to the previous one are
measured (twist andnose-dive). The most basic interface to
this tape would be as an Analog device, reporting two angu-
lar values for each link.

Whereas the Analog interface gives all the necessary infor-
mation needed to derive information about the tape, it is
probably not the most appropriate interface for many appli-
cations. The basic function of the tape is to describe a
curve in space. Although this might be shoehorned into the
Tracker interface, it is more properly a new device type.
To define a general class for this, we might think of ori-
ented splines. Thus, a layered interface would be provided,
possibly by implementing a general server that reads in
analog orientations and exports splines.

In practice, this tape will be used to track the pose of a
user’s arm relative to the torso. For this purpose, three
poses are desired at known distances along the tape (where
it attaches to shoulder, elbow and wrist). Thus, another
layered interface would be written that takes the spline as
input and reports Tracker poses at some number of loca-
tions specified along the length of the tape. The client ap-
plication will attach to the device using its Tracker inter-
face, which reports the poses, while the calibration applica-
tion will attach using the Analog interface. Either applica-
tion, or another one entirely, could attach to the spline inter-
face and render the curve of the tape itself.

3. Networking
Connection initialization: The connection initialization
code design meets the following requirements:

• rapid start-up when connecting to a running server,
• rapid return to client code during connection set-up and

reconnection even when no server is active (can’t use
TCP connection requests from the client to the server,
which can hang indefinitely for ports in certain states),

• no dependence on opening a particular TCP port on the
server (a port that has been used by a recently-exited
server can remain unavailable for several minutes on
some operating systems),

• no dependence on opening particular ports on the client
(same reason, plus the fact that multiple clients would
require the same port number),

• ability to attempt reconnection without causing long
pauses in the client, and

• ability to connect or reconnect to a starting server rela-
tively quickly (to enable restarting a failed server with-
out restarting the client application).

Figure Connectshows the algorithm used. Although com-
plicated, it runs only at connection startup – messages flow-
ing during a session are sent directly. Server connections
open a well-known UDP port for connection requests from
clients. Clients open any available TCP port and send a
UDP request for the server to connect on that port. The
client then enters a state in which it does zero-time selects
on its TCP port to see if the server has called back, return-
ing control to the application immediately if not; it sends
another request packet once per second if there is no re-
sponse from the server (the client devices will not be con-
nected to their server counterparts, see “Client/server object



Page 4

verification”). When the server receives the connection
request, it opens a new communications endpoint, which
calls the client back at its specified TCP port.

Type and sender map:VRPN devices and user code regis-
ter human-readable type names ("Tracker Pos/Quat", "But-
ton Change") and sender names (“Magellan0”,
“My_tracker”) and receive integer tokens that are used to
send messages. At connection, client and server exchange
mappings from tokens to names; each builds a translation
table to convert incoming tokens to local tokens. This en-
ables efficient transmission and translation while providing
flexibility.

Reliable vs. fast:Different device types have quite differ-
ent requirements for message delivery, ranging from button
presses (which must not be lost, but have relatively low
sensitivity to latency) to tracker reports (which have strin-
gent latency requirements but if one is lost another will be
coming soon). Systems willing to devote an extra thread on
each host to message delivery have been able to provide a
wide range of delivery semantics. [18] VRPN neither re-
quires nor provides a separate thread for delivery, and so
only provides two classes of delivery: reliable (via TCP)
and unreliable (via UDP).

Multiple connections to a server:Server object messages
are sent to all connected clients. Messages received from
one client are delivered to all server objects, but not sent
out to the other clients.Client/server object verification:
VRPN client objects emit warnings when not connected to
their remote server. Callback handlers trigger initialization
code when a connection to an object’s counterpart is estab-

lished or broken. Starting a remote server: VRPN en-
ables Unix clients to start a needed remote server when run.

Synchronized time stamps: Each message has a time
stamp matching either the time at which the data for the
message became available, or the time at which an action
should be taken by the receiver. VRPN provides clock syn-
chronization between hosts on either side of a connection.

TCP_NODELAY: VRPN sets TCP_NODELAY on its
TCP sockets, causing immediate sending of acknowledge-
ments regardless of whether there is data waiting to be
transmitted. This prevents delays on one-way information
flows (like Analog data from some servers).

Network standard byte order: The htonl() family of rou-
tines provides network-standard byte ordering for all mes-
sages; VRPN includes routines to marshal and unmarshal
each of its data types into this format.

Warning/error printing: VRPN enables servers to pass
warning and error messages to remote clients, so device
drivers and servers anywhere in the system can send hu-
man-readable warning and error reports. This has proven
very useful for debugging distributed system behavior.

4. Separate Client and Server Processes
The ability to run different parts of a VR application in dif-
ferent processes is of widely-recognized importance. [5-7,
19-21] For the case of VR devices, client and server should
be run as separate process when:

• they have very different update rates,
• server initialization takes a long time,
• message timing is critical, or
• the server requires frequent access to a device.

Local or same-process client and server:Whereas VRPN
is designed to handle network connections between clients
and servers, it is possible to run either in separate processes
on the same machine, or within the same process. When
running within the same process, messages are handed di-
rectly to the callback routines without passing through the
network.

5. Storage and Replay
VRPN provides a log file mechanism, by which all mes-
sages passed over a client/server connection session can be
stored to file, and then the session replayed or analyzed.
This capability has been used to:

• record user motion during human-factors studies,
• provide an electronic lab notebook recording actions

and responses during materials science experiments,
• store interactions between collaborating users to allow

comparisons between different sharing strategies, and
• capture a series of user motions and button presses to

enable debugging of new interaction techniques with-
out repeatedly donning the VR equipment.

Server opens well-known
UDP port, listening for
connection requests

Client opens any TCP
port to receive on, then
sends request to server

Server makes TCP connection
to the client at the specified port

Hello message passed Hello message passed
Version number check Version number check

Type and sender map Type and sender map

Clock synchronization Clock synchronization

Any UDP port opened Any UDP port opened
Inform other side Inform other side

TCP & UDP flow TCP & UDP flow

Figure Connect: Sequence of actions to establish a VRPN
connection.



Page 5

Logging can be done at either the client side or the sender
side. When client-side logging is performed and the server
crashes and restarts, logging continues.

Log file replay: A client application “connects” to a stored
log file and reads from its devices by specifying a file URL
as the location of the device, and does not require any extra
consideration if the intent is to replay the original session at
its normal rate.

6. Performance
One criterion for evaluating VR device libraries and archi-
tectures is comparison of their performance with a dedi-
cated, locally-connected device using device-specific driv-
ers. Milliseconds of latency are the critical currency in VR
systems; the value of different features is measured against
their cost in time. [22] On this scale, VRPN measures up
well; for some configurations the time to read a message
using VRPN can be significantlylessthan that of a locally-
connected device with manufacturer-supplied drivers. To
explain how, we describe timing information and latency-
reducing optimizations within VRPN. Developers of other
libraries or stand-alone applications can use these same
techniques.

Overhead added by VRPN: Network latency tests were
run between an SGI and a Linux box within a switched
Ethernet environment. Ping tests between the machines
showed an average one-way time of 0.51ms. Application-
level VRPN messages (from the client to the server, then a
response message being received by the client callback
handler) had average one-way times of 3.3ms. This in-
cludes all overhead from the operating system network lay-
ers, as well as from VRPN. Slightly lower times have been
found from a Linux client to a Windows 98 server, and an
average of 1.7ms one way is found from an SGI client to a
Windows 98 server.

Three serial port accelerations: While developing the
drivers for trackers that communicate over serial ports
(Polhemus Fastrak, Ascension Flock of Birds, Origin Dy-
naSight), we discovered three ways to significantly decrease
latency: 1) decreasing buffering in the UARTS (3ms), 2)
decreasing latency within the operating system by setting

the scheduler to run at 1kHz rather than 100Hz (5ms), and
3) providing multiple serial connections to the device (one
per sensor for a Flock of Birds) (3ms). Since the VRPN
overhead is below the latency reductions provided by these
techniques, it can actually be faster to read from a device
connected to a remote, well-configured server than a device
connected to the local machine.

Optimized, time-aware drivers: The driver that ships with
a product is not always optimized for minimum latency, and
seldom deals explicitly with time. Some wait a pessimistic
amount of time before reading; VRPN drivers continually
read the available characters and send a report as soon as
available. A report’s time is based on when the first charac-
ter is received, rather than when the whole report has been
collected. Since a separate server process usually polls
devices at 1kHz, this provides much more accurate timing
than is available using a locally-connected device within a
60-Hz polling process.

Notes: This paper does not present the end-to-end timing
for trackers and other devices within VRPN, but rather ad-
dresses the incremental latency due to VRPN. VRPN mes-
sages are sent between hosts using a single UDP or TCP
packet in steady state, so network latency should be mini-
mal compared to other networking toolkits.

7. Using VRPN: User/Application Layer
VRPN is optimized to be as easy to use as possible for a
client program. An example client program that reads posi-
tions from all of the sensors on a tracker is shown in figure
ExampleClient.

This program constructs a tracker client object
(vrpn_Tracker_Remote), giving a string that includes the
name of the server object (Tracker0) and the location of the
server program (@myhost). The name must match the
name of the server device (obtained from a configuration
file). The information after the @ sign is a Universal Re-
source Locator (URL), whose default type is to a VRPN
connection at the host whose name is specified. Real appli-
cations read the device name from the command line or an
environment variable.

#include “vrpn_Tracker.h”

void handle_pos(void *, const vrpn_TRACKERCB t) {
printf("Pos, sensor %d = %5.3f, %5.3f, %5.3f\n",

t.sensor, t.pos[0], t.pos[1], t.pos[2]);

}

main() {
vrpn_Tracker_Remote *tkr = new vrpn_Tracker_Remote(“Tracker0@myhost”);
tkr->register_change_handler(NULL, handle_pos);
while (1) { tkr->mainloop(); }

}
Figure ExampleClient



Page 6

The program next registers a callback handler to receive
pose reports from the tracker. This handler is called when-
ever tracker pose messages are received. The callback pa-
rametert holds the data passed by the server; for trackers,
this is the time at which the message was sent, the sensor
number, its position, and its orientation.

Themainloop()method must be called periodically for each
client object. This method causes VRPN to send all pend-
ing messages and read all incoming messages for the con-
nection associated with the device. (When there are multi-
ple devices sharing the same connection, themainloop()
call on one device will in fact deliver the pending messages
to all of them.)

Callback handlers and flow of control: The application
sets up handlers for each message type. The handlers may
potentially be called in three circumstances: when
mainloop()is called on the object they are registered with;
when mainloop() is called on another object sharing the
same connection; and when an appropriate-type message is
sent by an object that shares the same connection. Because
the mapping of objects to connections is flexible and the
effects of object methods vary, the application should oper-
ate under the assumption that the callback handlers may be
invoked whenever a call is made to any VRPN object, but
at no other time.

Thecontrolled ambiguityof when callbacks can be invoked
is an important part of the semantics of VRPN or any li-
brary that allows both local and remote servers. The ambi-
guity is due to the possibility of multiple devices mapping
to same connection, and to the optimization of local mes-
sage delivery. The ambiguity is controlled because the
handlers are not called at arbitrary times, but rather only
when a VRPN method is invoked. This allows the pro-
grammer to proceed as though the system were a single-
threaded application.

8. Conclusion
VRPN provides a network-transparent interface to virtual-
reality peripherals. Due to its flexibility and performance,
it is a widely used platform, even by users of other general-
purpose VR frameworks. This document describes the fea-
tures of VRPN that are critical to its success, in particular
its novel method of factoring a device into separate and
almost independent functions. This separation allows each
function to be handled in a suitable way, without the com-
plexities of combinations. VRPN handles the mapping of
functions to communications channels and device drivers
transparently and efficiently. The bundling back into de-
vice groupings is (1) higher-level and (2) handled almost
without the user thinking about it.

VRPN also integrates a number of more well-known fea-
tures. Having these features combined into a single system
is valuable both to those who use VRPN directly and as an

example to those who implement libraries or applications
that make use of VR peripherals.

References
1. Taylor II, R.M., The Virtual Reality Peripheral Network (VRPN), .

1998: http://www.cs.unc.edu/Research/vrpn.
2. Staff, dVS Technical Overview. 1993, Bristol, UK: DIVISION Lim-

ited.
3. Corporation, S.,WorldToolkit Technical Overview, . 1998.
4. Panda3D,http://www.panda3d.com/, .
5. Shaw, C.,et al. The decoupled simulation model for VR systems. in

Proceedings of CHI '92. 1992.
6. Sokolewicz, M.,et al. Using the GIVEN++ Toolkit for System De-

velopment in MuSE. in Proceedings of First Eurographics Workshop
on Virtual Reality. 1993. Polytechnical University of Catalonia.

7. Ståhl, O. and M. Andersson.DIVE - a Toolkit for Distributed VR
Applications. in Proceedings of the 6th ERCIM workshop. 1994.
Stockholm.

8. Singh, G.,et al. BrickNet: Sharing Object Behaviors on the Net. in
Proc. IEEE Virtual Reality Annual International Symposium
(VRAIS'95). 1995: Research Triangle Park, NC.

9. Gossweiler, R.,et al. DIVER: a DIstributed Virtual Environment
Research Platform. in IEEE 1993 Symposium on Research Frontiers
in Virtual Reality. 1993.

10. Snowden, D.N. and A.J. West.The AVIARY VR-system. A Prototype
Implementation. in Proceedings of the 6th ERCIM workshop. 1994.
Stockholm.

11. Pettifer, S.,et al. DEVA3: Architecture for a Large Scale Virtual
Reality System. in Proc. ACM Symposium in Virtual Reality Software
and Technology 2000 (VRST'00). 2000. Seoul, Korea.

12. Just, C.,et al. VR Juggler: A Framework for Virtual Reality Devel-
opment. in 2nd Immersive Projection Technology Workshop (IPT98).
1998. Ames.

13. Watsen, K. and M. Zyda.Bamboo - A Portable System for Dynami-
cally Extensible, Real-time, Networked, Virtual Environments. in
1998 IEEE Virtual Reality Annual International Symposium
(VRAIS'98). 1998. Atlanta, Georgia.

14. Julier, S.,et al. The Software Architecture of a Real-Time Battlefield
Visualization Virtual Environment. in Proceedings IEEE Virtual Re-
ality '99. 1999. Houston, Texas: IEEE Computer Society Press.

15. Arsenault, L.,et al., http://www.diverse.vt.edu/, .
16. Foley, J., V.L. Wallace, and P. Chan,The Human Factors of Com-

puter Graphics Interaction Techniques.IEEE Computer Graphics
and Application, 1984.4(11): p. 13-48.

17. Measurand,www.measurand.com, . 2000.
18. Kessler, G.D. and L.F. Hodges.A Network Communication Protocol

for Distributed Virtual Environment Systems. in Proceedings of
VRAIS '96. 1996. Santa Clara: IEEE.

19. Adachi, Y., T. Kumano, and K. Ogino.Intermediate Representation
for Stiff Virtual Objects. in Proc. IEEE Virtual Reality Annual Inter-
national Symposium (VRAIS'95). 1995. Research Triangle Park, NC.

20. Bryson, S.T. and S. Johan.Time Management, Simultaneity and
Time-Critical Computation in Interactive Unsteady Visualization En-
vironments. in IEEE Visualization '96. 1996: IEEE.

21. Mark, W.,et al. Adding Force Feedback to Graphics Systems: Issues
and Solutions. in Computer Graphics: Proceedings of SIGGRAPH
'96. 1996.

22. Holloway, R., Registration error analysis for augmented reality.
Presence, 1997.6(4): p. 413-432.


